自引率: 10.8%
被引量: 2143
通过率: 暂无数据
审稿周期: 2
版面费用: 暂无数据
国人发稿量: 21
投稿须知/期刊简介:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the idenfication of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials. Original papers predominate. Manuscripts may be of any length, but must be complete studies; preliminary communications are not accepted. Review articles and hypothesis papers are welcomed, and will be evaluated in the same way as experimental papers. Authors intending to submit a review are advised to communicate their intentions to the Editors, to avoid possible duplication.
期刊描述简介:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the idenfication of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials. Original papers predominate. Manuscripts may be of any length, but must be complete studies; preliminary communications are not accepted. Review articles and hypothesis papers are welcomed, and will be evaluated in the same way as experimental papers. Authors intending to submit a review are advised to communicate their intentions to the Editors, to avoid possible duplication.
-
The protective effects of orexin B in neuropathic pain by suppressing inflammatory response.
Chronic pain induced by pathological insults to the sensorimotor system is a typical form of neuropathic pain (NP), and the underlying mechanism is complex. Currently, there are no successful therapeutic interventions for NP. Orexin B is a neuropeptide with a wide range of biological functions. However, the pharmacological function of orexin B in chronic neuropathic pain has been less studied. Here, we aim to examine the neuroprotective effects of orexin B in chronic constriction injury (CCI)- induced NP. Firstly, we found that orexin type 2 receptor (OX2R) but not orexin type 1 receptor (OX1R) was reduced in the spinal cord (SC) of CCI-treated rats. Mechanical withdrawal threshold and thermal withdrawal latency assays display that administration of orexin B clearly ameliorated CCI-evoked neuropathic pain dose-dependently. Notably, orexin B treatment also effectively prevented microglia activation by reducing the levels of IBA1. Additionally, orexin B was also found to suppress the inflammatory response in the SC tissue by reducing the levels of IL-6, TNF-α, iNOS, and COX-2 as well as the production of NO and PGE2 in CCI-treated rats. Furthermore, orexin B administration attenuated oxidative stress (OS) by increasing the activity of SOD and the levels of GSH. Mechanically, orexin B prevented activation of JNK/NF-κB signaling in the SC of CCI-treated rats. Based on these findings, we conclude that orexin B might have a promising role in ameliorating CCI-evoked neuropathic pain through the inhibition of microglial activation and inflammatory response.
被引量:- 发表:1970
-
Melittin protects against neural cell damage in rats following ischemic stroke.
In this study, we explored the neuroprotective effect of melittin (MEL) after brain ischemia using a rat model. The rats underwent middle cerebral artery occlusion (MCAO) for 60 min and were randomly divided into the control group, saline group, and MEL group. Rats in each group were injected intraperitoneally with MEL one day before MCAO until sacrificed. Morris water maze and rotation test were used to assess locomotor function and cognitive ability. The 9.4 Tesla MRI was used to scan and assess the infarct volume of the rat brains. Immunohistochemistry was used to detect the sites of action of MEL on microglia. Western blot and ELISA were used to measure the effect of MEL on the production of pro-inflammatory cytokines. The effect of MEL on neuronal cell apoptosis was observed by flow cytometry. Compared with the saline group, MEL treatment significantly increased the density of neurons in the cerebral cortical and reduced the cerebral infarct size after MCAO (33.9 ± 8.8% vs. 15.8 ± 3.9%, P < 0.05). Meanwhile, the time for MEL-treated rats to complete the water maze task on the 11th day after MCAO was significantly shorter than that of rats in the saline group (P < 0.05). MEL treatment also prolonged the rotarod retention time on day 14 after MCAO. Immunohistochemistry analysis showed that MEL inhibited the activation of microglia and suppressed the expression of TNF-α, IL-6, and IL-1β in the brain after ischemia. MEL treatment resulted in a significant decrease in TLR4, MyD88, and NF-κB p65 levels in extracts from the ischemic cerebral cortex. Finally, MEL reduced neuronal apoptosis induced by ischemic stroke (P < 0.05). MEL treatment promotes neurological function recovery after cerebral ischemia in rats. These effects are potentially mediated through anti-inflammatory and anti-apoptotic mechanisms.
被引量:- 发表:1970
-
Ninjinyoeito ameliorates anorexia and changes in peptide YY and ghrelin levels of cisplatin-treated mice.
We explored the effect of Ninjinyoeito (NYT) on cisplatin-induced anorexia, which reduces cancer patient survival. Both gastrointestinal motility and plasma concentrations of gastrointestinal peptides were assessed. Nine-week-old ICR female mice received intraperitoneal cisplatin injections (10 mg/kg) and daily oral NYT doses of 300 mg/kg (NYT300) or 1000 mg/kg (NYT1000). Plasma levels of gastrointestinal peptides were measured at 3 and 6 days after cisplatin injection. Gastrointestinal motility was assessed by analyzing the concentration of phenol red marker within sections of the gastrointestinal tract. Cisplatin-injected mice showed a decrease in daily food intake, but this effect was attenuated on day 5 with NYT1000 administration. Although plasma ghrelin levels were reduced on day 3 in cisplatin-treated mice, NYT1000 administration ameliorated this decrease. However, there were no differences in ghrelin levels among all groups on day 6. Levels of peptide YY (PYY) were elevated in the plasma of cisplatin-injected mice on days 3 and 6. Administration of NYT300 and NYT1000 suppressed the increase in PYY levels on day 6 but not on day 3. Gastrointestinal motility was impaired on day 6 in cisplatin-treated mice, but NYT1000 administration attenuated this effect. Our results suggest that NYT improves cisplatin-induced anorexia by suppressing alterations in ghrelin and PYY levels and by increasing gastrointestinal motility. Therefore, NYT may be a promising candidate for alleviating cisplatin-induced anorexia.
被引量:1 发表:1970
-
Upregulation of Xbp1 in NPY/AgRP neurons reverses diet-induced obesity and ameliorates leptin and insulin resistance.
The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes are not fully understood. In this study, we show that induction of the unfolded protein response transcription factor, spliced X-box binding protein 1 (Xbp1s), in Agouti-Related Peptide (AgRP) neurons alone, is sufficient to not only protect against but also significantly reverse diet-induced obesity (DIO) as well as improve leptin and insulin sensitivity, despite activation of endoplasmic reticulum stress. We also demonstrate that constitutive expression of Xbp1s in AgRP neurons contributes to improved insulin sensitivity and glucose tolerance. Together, our results identify critical molecular mechanisms linking ER stress in arcuate AgRP neurons to acute leptin and insulin resistance as well as liver glucose metabolism in DIO and diabetes.
被引量:- 发表:1970
-
The restraint stress-induced antinociceptive effects decreased by antagonism of both orexin receptors within the CA1 region of the hippocampus.
Studies have indicated that stress-related symptoms can lead to hormonal and neural changes, affecting the pain threshold and nociceptive behaviors. The precise role of orexin receptors (OX1r and OX2r) in stress-induced analgesia (SIA) remains an inquiry yet to be comprehensively elucidated. The current investigation aimed to assess the impact of acute immobilization restraint stress on pain-related behavioral responses after administering antagonists targeting OX1r and OX2r in a rat model using the tail-flick test. After a period of five to seven days post-stereotaxic surgery in CA1, the baseline tail-flick latency (TFL) was recorded for each animal. Subsequently, rats were unilaterally administered varying doses of the OX1r antagonist (SB334867; 1, 3, 10, and 30 nmol), the OX2r antagonist (TCS OX2 29; 1, 3, 10, and 30 nmol), or a vehicle (0.5 μl solution containing 12% DMSO) through an implanted cannula. Following a 5-min interval, the animals were subjected to a restraint stress (RS) lasting for 3 h. The tail-flick test was conducted after the stress exposure, and the TFLs were assessed at 60-min intervals. The findings of this study revealed that RS elicits antinociceptive responses in the tail-flick test. Microinjection of OX1r and OX2r antagonists into the CA1 attenuated RS-induced analgesia during the tail-flick test. Furthermore, the results underscored the preeminent role of OX2 receptors in modulating SIA. In conclusion, the orexin system localized within the hippocampal CA1 region may, in part, contribute to the manifestation of SIA in the context of acute pain.
被引量:- 发表:1970