LANCET
柳叶刀
ISSN: 0140-6736
自引率: 2.6%
发文量: 275
被引量: 256199
影响因子: 202.528
通过率: 暂无数据
出版周期: 周刊
审稿周期: 1.89
审稿费用: 200
版面费用: 100
年文章数: 275
国人发稿量: 33

投稿须知/期刊简介:

The Lancet is the world''s leading independent general medical journal. The journal''s coverage is international in focus and extends to all aspects of human health.The Lancet is published weekly from editorial offices in London and New York. It aims to publish the best original primary research papers, and review articles of the highest standard. The Lancet is stringently edited and peer-reviewed to ensure the scientific merit and clinical relevance of its diverse content. Drawing on an international network of advisers and contributors, The Lancet meets the needs of physicians by adding to their clinical knowledge and alerting them to current issues affecting the practise of medicine world wide. The blend of challenging editorials, signed commentaries, original research, commissioned reviews, an international news section, and the views of readers in the letters pages make The Lancet an essential weekly read for physicians all over the world.The Lancet is available by personal subscription to individual physicians. It is also available by subscription to institutions, libraries, and biomedical companies.Visit The Lancet''s World Wide Web site to find out more - http://www.thelancet.com

期刊描述简介:

The Lancet is the world''s leading independent general medical journal. The journal''s coverage is international in focus and extends to all aspects of human health.The Lancet is published weekly from editorial offices in London and New York. It aims to publish the best original primary research papers, and review articles of the highest standard. The Lancet is stringently edited and peer-reviewed to ensure the scientific merit and clinical relevance of its diverse content. Drawing on an international network of advisers and contributors, The Lancet meets the needs of physicians by adding to their clinical knowledge and alerting them to current issues affecting the practise of medicine world wide. The blend of challenging editorials, signed commentaries, original research, commissioned reviews, an international news section, and the views of readers in the letters pages make The Lancet an essential weekly read for physicians all over the world.The Lancet is available by personal subscription to individual physicians. It is also available by subscription to institutions, libraries, and biomedical companies.Visit The Lancet''s World Wide Web site to find out more - http://www.thelancet.com

最新论文
  • Durvalumab with or without bevacizumab with transarterial chemoembolisation in hepatocellular carcinoma (EMERALD-1): a multiregional, randomised, double-blind, placebo-controlled, phase 3 study.

    Transarterial chemoembolisation (TACE) is standard of care for patients with unresectable hepatocellular carcinoma that is amenable to embolisation; however, median progression-free survival is still approximately 7 months. We aimed to assess whether adding durvalumab, with or without bevacizumab, might improve progression-free survival. In this multiregional, randomised, double-blind, placebo-controlled, phase 3 study (EMERALD-1), adults aged 18 years or older with unresectable hepatocellular carcinoma amenable to embolisation, an Eastern Cooperative Oncology Group performance status of 0 or 1 at enrolment, and at least one measurable intrahepatic lesion per modified Response Evaluation Criteria in Solid Tumours (RECIST) were enrolled at 157 medical sites including research centres and general and specialist hospitals in 18 countries. Eligible patients were randomly assigned (1:1:1), stratified by TACE method, region, and portal vein invasion, using an interactive voice response or web response system, to TACE plus either durvalumab plus bevacizumab (1500 mg intravenous durvalumab once every 4 weeks, then 1120 mg durvalumab plus 15 mg/kg intravenous bevacizumab once every 3 weeks), durvalumab plus placebo (same regimen using placebo instead of bevacizumab), or placebo alone (same regimen using placebo instead of durvalumab and instead of bevacizumab). Participants, investigators, and those assessing outcomes were masked to treatment assignment until data analysis. The primary endpoint was progression-free survival, by blinded independent central review (BICR), and per RECIST version 1.1, with durvalumab plus bevacizumab versus placebo alone in the intention-to-treat population (ITT; ie, all participants assigned to treatment). Key secondary endpoints were progression-free survival by BICR per RECIST version 1.1 with durvalumab plus placebo versus placebo alone, overall survival, and time to deterioration in select patient-reported outcomes. Participants continue to be followed up for overall survival, and overall survival and patient-reported outcomes will be reported in a later publication. Safety was assessed in the safety analysis set, which included all participants assigned to treatment who received any study treatment (ie, any durvalumab, bevacizumab, or placebo) by treatment received. This study is registered with ClinicalTrials.gov, NCT03778957, and is closed to accrual. Between Nov 30, 2018, and July 19, 2021, 887 patients were screened, of whom 616 were randomly assigned to durvalumab plus bevacizumab (n=204), durvalumab plus placebo (n=207), or placebo alone (n=205; ITT population). Median age was 65·0 years (IQR 59·0-72·0), 135 (22%) of 616 participants were female, 481 (78%) were male, 375 (61%) were Asian, 176 (29%) were White, 22 (4%) were American Indian or Alaska Native, nine (1%) were Black or African American, one (<1%) was native Hawaiian or other Pacific Islander, and 33 (5%) were other races. As of data cutoff (Sept 11, 2023) median follow-up for progression-free survival was 27·9 months (95% CI 27·4-30·4), median progression-free survival was 15·0 months (95% CI 11·1-18·9) with durvalumab plus bevacizumab, 10·0 months (9·0-12·7) with durvalumab, and 8·2 months (6·9-11·1) with placebo. Progression-free survival hazard ratio was 0·77 (95% CI 0·61-0·98; two-sided p=0·032) for durvalumab plus bevacizumab versus placebo, and 0·94 (0·75-1·19; two-sided p=0·64) for durvalumab plus placebo versus placebo. The most common maximum grade 3-4 adverse events were hypertension in participants who received durvalumab and bevacizumab (nine [6%] of 154 participants), anaemia in participants who received durvalumab and placebo (ten [4%] of 232 participants), and post-embolisation syndrome in participants who received placebo alone (eight [4%] of 200 participants). Study treatment-related adverse events that led to death occurred in none of 154 participants who received durvalumab and bevacizumab, three (1%) of 232 who received durvalumab and placebo (n=1 for arterial haemorrhage, liver injury, and multiple organ dysfunction syndrome), and three (2%) of 200 who received placebo alone (n=1 for oesophageal varices haemorrhage, upper gastrointestinal haemorrhage, and dermatomyositis). Durvalumab plus bevacizumab plus TACE has the potential to set a new standard of care. With additional follow-up of the EMERALD-1 study, future analyses, including the final overall survival data and patient-reported outcomes, will help to further characterise the potential clinical benefits of durvalumab plus bevacizumab plus TACE in hepatocellular carcinoma amenable to embolisation. AstraZeneca.

    被引量:- 发表:1970

  • Transarterial chemoembolisation combined with lenvatinib plus pembrolizumab versus dual placebo for unresectable, non-metastatic hepatocellular carcinoma (LEAP-012): a multicentre, randomised, double-blind, phase 3 study.

    Transarterial chemoembolisation (TACE) is standard care for unresectable, non-metastatic hepatocellular carcinoma. We aimed to evaluate the addition of lenvatinib and pembrolizumab to TACE versus dual placebo plus TACE in patients with unresectable, non-metastatic hepatocellular carcinoma. In this multicentre, randomised, double-blind, phase 3 study (LEAP-012), patients were recruited from 137 global sites in 33 countries or regions. Eligible patients were age 18 years or older with unresectable, non-metastatic hepatocellular carcinoma not amenable to curative treatment, but with tumours amenable to TACE, Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and Child-Pugh class A disease. Eligible participants were randomly assigned (1:1), stratified by study site, α-fetoprotein level, ECOG performance status, albumin-bilirubin grade, and tumour burden, by a central interactive response system, to receive TACE and either oral lenvatinib (bodyweight ≥60 kg: 12 mg; bodyweight <60 kg: 8 mg; once daily) plus intravenous pembrolizumab (400 mg once every 6 weeks for up to 2 years) or matched dual placebo (oral and intravenous). Primary endpoints were progression-free survival (threshold one-sided p=0·025), per Response Evaluation Criteria in Solid Tumours version 1.1 (modified for the current study to allow for up to five target tumours in the liver and requiring new intrahepatic tumours to meet LI-RADS 5 criteria to be considered progressive disease) by blinded independent central review, and overall survival (threshold one-sided p=0·0012) in the intention-to-treat (ITT) population (ie, all participants randomly assigned to treatment). Safety was assessed in the as-treated population (ie, all participants who were randomly assigned and received at least one dose of any study treatment). Here, we report results from the first interim analysis (final analysis for progression-free survival). This study is registered with ClinicalTrials.gov, NCT04246177, and is active but not recruiting. Between May 22, 2020, and Jan 11, 2023, 847 patients were screened, of whom 480 (57%) were enrolled and randomly assigned to receive TACE plus lenvatinib plus pembrolizumab (n=237) or TACE plus dual placebo (n=243; ITT population). Median age was 66 years (IQR 58-73), 82 (17%) of 480 participants were female, 398 (83%) were male, 98 (20%) were White, 347 (72%) were Asian, four (1%) were Black or African American, and five (1%) were American Indian or Alaska Native. Median follow-up as of data cutoff (Jan 30, 2024) was 25·6 months (IQR 19·5-32·4). Median progression-free survival was 14·6 months (95% CI 12·6-16·7; 132 events [20 deaths and 112 progressions]) with lenvatinib plus pembrolizumab and 10·0 months (8·1-12·2; 154 events [eight deaths and 146 progressions]) with placebo (hazard ratio [HR] 0·66 [95% CI 0·51-0·84]; one-sided p=0·0002). 69 (29%) of 237 in the lenvatinib plus pembrolizumab group and 82 (34%) of 243 from the placebo group died, with a 24-month overall survival rate of 75% (95% CI 68-80) in the lenvatinib plus pembrolizumab group and 69% (62-74) in the placebo group (HR 0·80 [95% CI 0·57-1·11]; one-sided p=0·087). Grade 3 or worse treatment-related adverse events occurred in 169 (71%) of 237 participants in the lenvatinib plus pembrolizumab group and in 76 (32%) of 241 in the placebo group, the most common of which were hypertension (57 [24%] vs 18 [7%]) and platelet count decreased (27 [11%] vs 15 [6%]). Deaths due to treatment-related adverse events occurred in four (2%) participants in the lenvatinib plus pembrolizumab group (n=1 each due to hepatic failure, gastrointestinal haemorrhage, myositis, and immune-mediated hepatitis) and one (<1%) in the placebo group (due to brain stem haemorrhage). TACE plus lenvatinib plus pembrolizumab showed significant, clinically meaningful improvement in progression-free survival in patients with unresectable, non-metastatic hepatocellular carcinoma compared with TACE plus placebo. The numerical improvement in overall survival is encouraging, but longer follow-up is necessary. Merck Sharp & Dohme, a subsidiary of Merck & Co, Inc, Rahway, NJ, USA, and Eisai, Nutley, NJ, USA.

    被引量:- 发表:1970

  • Burden of disease scenarios by state in the USA, 2022-50: a forecasting analysis for the Global Burden of Disease Study 2021.

    The capacity to anticipate future health issues is important for both policy makers and practitioners in the USA, as such insights can facilitate effective planning, investment, and implementation strategies. Forecasting trends in disease and injury burden is not only crucial for policy makers but also garners substantial interest from the general populace and leads to a better-informed public. Through the integration of new data sources, the refinement of methodologies, and the inclusion of additional causes, we have improved our previous forecasting efforts within the scope of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to produce forecasts at the state and national levels for the USA under various possible scenarios. We developed a comprehensive framework for forecasting life expectancy, healthy life expectancy (HALE), cause-specific mortality, and disability-adjusted life-years (DALYs) due to 359 causes of disease and injury burden from 2022 to 2050 for the USA and all 50 states and Washington, DC. Using the GBD 2021 Future Health Scenarios modelling framework, we forecasted drivers of disease, demographic drivers, risk factors, temperature and particulate matter, mortality and years of life lost (YLL), population, and non-fatal burden. In addition to a reference scenario (representing the most probable future trajectory), we explored various future scenarios and their potential impacts over the next several decades on human health. These alternative scenarios comprised four risk elimination scenarios (including safer environment, improved behavioural and metabolic risks, improved childhood nutrition and vaccination, and a combined scenario) and three USA-specific scenarios based on risk exposure or attributable burden in the best-performing US states (improved high adult BMI and high fasting plasma glucose [FPG], improved smoking, and improved drug use [encompassing opioids, cocaine, amphetamine, and others]). Life expectancy in the USA is projected to increase from 78·3 years (95% uncertainty interval 78·1-78·5) in 2022 to 79·9 years (79·5-80·2) in 2035, and to 80·4 years (79·8-81·0) in 2050 for all sexes combined. This increase is forecasted to be modest compared with that in other countries around the world, resulting in the USA declining in global rank over the 2022-50 forecasted period among the 204 countries and territories in GBD, from 49th to 66th. There is projected to be a decline in female life expectancy in West Virginia between 1990 and 2050, and little change in Arkansas and Oklahoma. Additionally, after 2023, we projected almost no change in female life expectancy in many states, notably in Oklahoma, South Dakota, Utah, Iowa, Maine, and Wisconsin. Female HALE is projected to decline between 1990 and 2050 in 20 states and to remain unchanged in three others. Drug use disorders and low back pain are projected to be the leading Level 3 causes of age-standardised DALYs in 2050. The age-standardised DALY rate due to drug use disorders is projected to increase considerably between 2022 and 2050 (19·5% [6·9-34·1]). Our combined risk elimination scenario shows that the USA could gain 3·8 additional years (3·6-4·0) of life expectancy and 4·1 additional years (3·9-4·3) of HALE in 2050 versus the reference scenario. Using our USA-specific scenarios, we forecasted that the USA could gain 0·4 additional years (0·3-0·6) of life expectancy and 0·6 additional years (0·5-0·8) of HALE in 2050 under the improved drug use scenario relative to the reference scenario. Life expectancy and HALE are likewise projected to be 0·4-0·5 years higher in 2050 under the improved adult BMI and FPG and improved smoking scenarios compared with the reference scenario. However, the increases in these scenarios would not substantially improve the USA's global ranking in 2050 (from 66th of 204 in life expectancy in the reference scenario to 63rd-64th in each of the three USA-specific scenarios), indicating that the USA's best-performing states are still lagging behind other countries in their rank throughout the forecasted period. Regardless, an estimated 12·4 million (11·3-13·5) deaths could be averted between 2022 and 2050 if the USA were to follow the combined scenario trajectory rather than the reference scenario. There would also be 1·4 million (0·7-2·2) fewer deaths over the 28-year forecasted period with improved adult BMI and FPG, 2·1 million (1·3-2·9) fewer deaths with improved exposure to smoking, and 1·2 million (0·9-1·5) fewer deaths with lower rates of drug use deaths. Our findings highlight the alarming trajectory of health challenges in the USA, which, if left unaddressed, could lead to a reversal of the health progress made over the past three decades for some US states and a decline in global health standing for all states. The evidence from our alternative scenarios along with other published studies suggests that through collaborative, evidence-based strategies, there are opportunities to change the trajectory of health outcomes in the USA, such as by investing in scientific innovation, health-care access, preventive health care, risk exposure reduction, and education. Our forecasts clearly show that the time to act is now, as the future of the country's health and wellbeing-as well as its prosperity and leadership position in science and innovation-are at stake. Bill & Melinda Gates Foundation.

    被引量:- 发表:2024

  • The burden of diseases, injuries, and risk factors by state in the USA, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021.

    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides a comprehensive assessment of health and risk factor trends at global, regional, national, and subnational levels. This study aims to examine the burden of diseases, injuries, and risk factors in the USA and highlight the disparities in health outcomes across different states. GBD 2021 analysed trends in mortality, morbidity, and disability for 371 diseases and injuries and 88 risk factors in the USA between 1990 and 2021. We used several metrics to report sources of health and health loss related to specific diseases, injuries, and risk factors. GBD 2021 methods accounted for differences in data sources and biases. The analysis of levels and trends for causes and risk factors within the same computational framework enabled comparisons across states, years, age groups, and sex. GBD 2021 estimated years lived with disability (YLDs) and disability-adjusted life-years (DALYs; the sum of years of life lost to premature mortality and YLDs) for 371 diseases and injuries, years of life lost (YLLs) and mortality for 288 causes of death, and life expectancy and healthy life expectancy (HALE). We provided estimates for 88 risk factors in relation to 155 health outcomes for 631 risk-outcome pairs and produced risk-specific estimates of summary exposure value, relative health risk, population attributable fraction, and risk-attributable burden measured in DALYs and deaths. Estimates were produced by sex (male and female), age (25 age groups from birth to ≥95 years), and year (annually between 1990 and 2021). 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws (ie, 500 random samples from the estimate's distribution). Uncertainty was propagated at each step of the estimation process. We found disparities in health outcomes and risk factors across US states. Our analysis of GBD 2021 highlighted the relative decline in life expectancy and HALE compared with other countries, as well as the impact of COVID-19 during the first 2 years of the pandemic. We found a decline in the USA's ranking of life expectancy from 1990 to 2021: in 1990, the USA ranked 35th of 204 countries and territories for males and 19th for females, but dropped to 46th for males and 47th for females in 2021. When comparing life expectancy in the best-performing and worst-performing US states against all 203 other countries and territories (excluding the USA as a whole), Hawaii (the best-ranked state in 1990 and 2021) dropped from sixth-highest life expectancy in the world for males and fourth for females in 1990 to 28th for males and 22nd for females in 2021. The worst-ranked state in 2021 ranked 107th for males (Mississippi) and 99th for females (West Virginia). 14 US states lost life expectancy over the study period, with West Virginia experiencing the greatest loss (2·7 years between 1990 and 2021). HALE ranking declines were even greater; in 1990, the USA was ranked 42nd for males and 32nd for females but dropped to 69th for males and 76th for females in 2021. When comparing HALE in the best-performing and worst-performing US states against all 203 other countries and territories, Hawaii ranked 14th highest HALE for males and fifth for females in 1990, dropping to 39th for males and 34th for females in 2021. In 2021, West Virginia-the lowest-ranked state that year-ranked 141st for males and 137th for females. Nationally, age-standardised mortality rates declined between 1990 and 2021 for many leading causes of death, most notably for ischaemic heart disease (56·1% [95% UI 55·1-57·2] decline), lung cancer (41·9% [39·7-44·6]), and breast cancer (40·9% [38·7-43·7]). Over the same period, age-standardised mortality rates increased for other causes, particularly drug use disorders (878·0% [770·1-1015·5]), chronic kidney disease (158·3% [149·6-167·9]), and falls (89·7% [79·8-95·8]). We found substantial variation in mortality rates between states, with Hawaii having the lowest age-standardised mortality rate (433·2 per 100 000 [380·6-493·4]) in 2021 and Mississippi having the highest (867·5 per 100 000 [772·6-975·7]). Hawaii had the lowest age-standardised mortality rates throughout the study period, whereas Washington, DC, experienced the most improvement (a 40·7% decline [33·2-47·3]). Only six countries had age-standardised rates of YLDs higher than the USA in 2021: Afghanistan, Lesotho, Liberia, Mozambique, South Africa, and the Central African Republic, largely because the impact of musculoskeletal disorders, mental disorders, and substance use disorders on age-standardised disability rates in the USA is so large. At the state level, eight US states had higher age-standardised YLD rates than any country in the world: West Virginia, Kentucky, Oklahoma, Pennsylvania, New Mexico, Ohio, Tennessee, and Arizona. Low back pain was the leading cause of YLDs in the USA in 1990 and 2021, although the age-standardised rate declined by 7·9% (1·8-13·0) from 1990. Depressive disorders (56·0% increase [48·2-64·3]) and drug use disorders (287·6% [247·9-329·8]) were the second-leading and third-leading causes of age-standardised YLDs in 2021. For females, mental health disorders had the highest age-standardised YLD rate, with an increase of 59·8% (50·6-68·5) between 1990 and 2021. Hawaii had the lowest age-standardised rates of YLDs for all sexes combined (12 085·3 per 100 000 [9090·8-15 557·1]), whereas West Virginia had the highest (14 832·9 per 100 000 [11 226·9-18 882·5]). At the national level, the leading GBD Level 2 risk factors for death for all sexes combined in 2021 were high systolic blood pressure, high fasting plasma glucose, and tobacco use. From 1990 to 2021, the age-standardised mortality rates attributable to high systolic blood pressure decreased by 47·8% (43·4-52·5) and for tobacco use by 5·1% (48·3%-54·1%), but rates increased for high fasting plasma glucose by 9·3% (0·4-18·7). The burden attributable to risk factors varied by age and sex. For example, for ages 15-49 years, the leading risk factors for death were drug use, high alcohol use, and dietary risks. By comparison, for ages 50-69 years, tobacco was the leading risk factor for death, followed by dietary risks and high BMI. GBD 2021 provides valuable information for policy makers, health-care professionals, and researchers in the USA at the national and state levels to prioritise interventions, allocate resources effectively, and assess the effects of health policies and programmes. By addressing socioeconomic determinants, risk behaviours, environmental influences, and health disparities among minority populations, the USA can work towards improving health outcomes so that people can live longer and healthier lives. Bill & Melinda Gates Foundation.

    被引量:- 发表:2024

  • Ten Americas: a systematic analysis of life expectancy disparities in the USA.

    Nearly two decades ago, the Eight Americas study offered a novel lens for examining health inequities in the USA by partitioning the US population into eight groups based on geography, race, urbanicity, income per capita, and homicide rate. That study found gaps of 12·8 years for females and 15·4 years for males in life expectancy in 2001 across these eight groups. In this study, we aimed to update and expand the original Eight Americas study, examining trends in life expectancy from 2000 to 2021 for ten Americas (analogues to the original eight, plus two additional groups comprising the US Latino population), by year, sex, and age group. In this systematic analysis, we defined ten mutually exclusive and collectively exhaustive Americas comprising the entire US population, starting with all combinations of county and race and ethnicity, and assigning each to one of the ten Americas based on race and ethnicity and a variable combination of geographical location, metropolitan status, income, and Black-White residential segregation. We adjusted deaths from the National Vital Statistics System to account for misreporting of race and ethnicity on death certificates. We then tabulated deaths from the National Vital Statistics System and population estimates from the US Census Bureau and the National Center for Health Statistics from Jan 1, 2000, to Dec 31, 2021, by America, year, sex, and age, and calculated age-specific mortality rates in each of these strata. Finally, we constructed abridged life tables for each America, year, and sex, and extracted life expectancy at birth, partial life expectancy within five age groups (0-4, 5-24, 25-44, 45-64, and 65-84 years), and remaining life expectancy at age 85 years. We defined the ten Americas as: America 1-Asian individuals; America 2-Latino individuals in other counties; America 3-White (majority), Asian, and American Indian or Alaska Native (AIAN) individuals in other counties; America 4-White individuals in non-metropolitan and low-income Northlands; America 5-Latino individuals in the Southwest; America 6-Black individuals in other counties; America 7-Black individuals in highly segregated metropolitan areas; America 8-White individuals in low-income Appalachia and Lower Mississippi Valley; America 9-Black individuals in the non-metropolitan and low-income South; and America 10-AIAN individuals in the West. Large disparities in life expectancy between the Americas were apparent throughout the study period but grew more substantial over time, particularly during the first 2 years of the COVID-19 pandemic. In 2000, life expectancy ranged 12·6 years (95% uncertainty interval 12·2-13·1), from 70·5 years (70·3-70·7) for America 9 to 83·1 years (82·7-83·5) for America 1. The gap between Americas with the lowest and highest life expectancies increased to 13·9 years (12·6-15·2) in 2010, 15·8 years (14·4-17·1) in 2019, 18·9 years (17·7-20·2) in 2020, and 20·4 years (19·0-21·8) in 2021. The trends over time in life expectancy varied by America, leading to changes in the ordering of the Americas over this time period. America 10 was the only America to experience substantial declines in life expectancy from 2000 to 2019, and experienced the largest declines from 2019 to 2021. The three Black Americas (Americas 6, 7, and 9) all experienced relatively large increases in life expectancy before 2020, and thus all three had higher life expectancy than America 10 by 2006, despite starting at a lower level in 2000. By 2010, the increase in America 6 was sufficient to also overtake America 8, which had a relatively flat trend from 2000 to 2019. America 5 had relatively similar life expectancy to Americas 3 and 4 in 2000, but a faster rate of increase in life expectancy from 2000 to 2019, and thus higher life expectancy in 2019; however, America 5 experienced a much larger decline in 2020, reversing this advantage. In some cases, these trends varied substantially by sex and age group. There were also large differences in income and educational attainment among the ten Americas, but the patterns in these variables differed from each other and from the patterns in life expectancy in some notable ways. For example, America 3 had the highest income in most years, and the highest proportion of high-school graduates in all years, but was ranked fourth or fifth in life expectancy before 2020. Our analysis confirms the continued existence of different Americas within the USA. One's life expectancy varies dramatically depending on where one lives, the economic conditions in that location, and one's racial and ethnic identity. This gulf was large at the beginning of the century, only grew larger over the first two decades, and was dramatically exacerbated by the COVID-19 pandemic. These results underscore the vital need to reduce the massive inequity in longevity in the USA, as well as the benefits of detailed analyses of the interacting drivers of health disparities to fully understand the nature of the problem. Such analyses make targeted action possible-local planning and national prioritisation and resource allocation-to address the root causes of poor health for those most disadvantaged so that all Americans can live long, healthy lives, regardless of where they live and their race, ethnicity, or income. State of Washington, Bloomberg Philanthropies, Bill & Melinda Gates Foundation.

    被引量:- 发表:1970

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读