
自引率: 11.1%
被引量: 24561
通过率: 暂无数据
审稿周期: 1
版面费用: 暂无数据
国人发稿量: 85
投稿须知/期刊简介:
Published twice monthly, this frequently cited scientific journal features extensive coverage of the important advances in transplantation surgery. Areas covered include experimental and clinical transplantation, immunobiology, immunogenetics, histocompatibility and tissue antigens. Issues also contain overviews, analyses and commentaries, rapid communications, brief communications, forums letters to the editor, and announcements.
期刊描述简介:
Transplantation is the procedure of transferring a tissue or organ from one individual to another or from one site to another within a single individual. The transplanted tissue or organ replaces damaged or absent tissue, and is functional in the recipient.
-
The replacement of graft endothelium by recipient-type cells conditions allograft rejection mediated by indirect pathway CD4+ T cells.
Whereas the participation of alloreactive T cells sensitized by indirect allorecognition in graft rejection is well documented, the nature of recipient antigen presenting cells recognized by indirect pathway CD4+ T cells within the graft has yet to be identified. The purpose of this study was to determine the role played by graft endothelium replacement in the immune recognition of cardiac allografts rejected by indirect pathway CD4+ T cells. Transgenic RAG2-/- mice expressing I-Ab-restricted male antigen H-Y-specific TcR were studied for their capacity to reject H-2k male cardiac allografts. Chronic vascular rejection in this model was due to the indirect recognition of H-Y antigen shed from H-2k male allograft and presented by the recipient's own I-Ab APC to transgenic T cells. Immunohistochemical analysis of rejected grafts revealed the presence of numerous microvascular endothelial cells (EC) that expressed recipient's I-Ab MHC class II molecules. This observation suggested that graft endothelium replacement by I-Ab-positive cells of recipient origin could stimulate the rejection of male H-2k graft by I-Ab-restricted H-Y-specific T cells. To investigate further this possibility, hearts from H-2b-into-H-2k irradiation bone marrow (BM) chimera were transplanted in transgenic recipients. A direct correlation was observed between the presence of I-Ab-positive EC within myocardial microvessels and the induction of acute rejection of chimeric H-2k male cardiac allografts transplanted in transgenic recipients. We conclude that graft endothelium replacement by recipient-type cells is required for the rejection of cardiac allograft mediated by indirect pathway alloreactive CD4+ T cells.
被引量:- 发表:2006
-
The replacement of graft endothelium by recipient-type cells conditions allograft rejection mediated by indirect pathway CD4(+) T cells.
Whereas the participation of alloreactive T cells sensitized by indirect allorecognition in graft rejection is well documented, the nature of recipient antigen presenting cells recognized by indirect pathway CD4(+) T cells within the graft has yet to be identified. The purpose of this study was to determine the role played by graft endothelium replacement in the immune recognition of cardiac allografts rejected by indirect pathway CD4(+) T cells. Transgenic RAG2(-/-) mice expressing I-A(b)-restricted male antigen H-Y-specific TcR were studied for their capacity to reject H-2(k) male cardiac allografts. Chronic vascular rejection in this model was due to the indirect recognition of H-Y antigen shed from H-2(k) male allograft and presented by the recipient's own I-A(b) APC to transgenic T cells. Immunohistochemical analysis of rejected grafts revealed the presence of numerous microvascular endothelial cells (EC) that expressed recipient's I-A MHC class II molecules. This observation suggested that graft endothelium replacement by I-A(b)-positive cells of recipient origin could stimulate the rejection of male H-2(k) graft by I-A(b)--restricted H-Y--specific T cells. To investigate further this possibility, hearts from H-2(b)--into--H-2(k) irradiation bone marrow (BM) chimera were transplanted in transgenic recipients. A direct correlation was observed between the presence of I-A(b)-positive EC within myocardial microvessels and the induction of acute rejection of chimeric H-2(k) male cardiac allografts transplanted in transgenic recipients. We conclude that graft endothelium replacement by recipient-type cells is required for the rejection of cardiac allograft mediated by indirect pathway alloreactive CD4(+) T cells.
被引量:2 发表:2006
-
Accommodation after lung xenografting from hamster to rat.
Long-term xenograft survival can be achieved in hamster hearts transplanted into rats treated with cobra venom factor (CVF) and cyclosporine A (CsA). This phenomenon of "accommodation" is associated with expression of protective genes such as bcl-2, bcl-X(L), and heme-oxygenase-1. We examined whether accommodation could be induced in hamster-to-rat lung xenografts and whether the pattern of protective genes is similar to cardiac xenografts. We used hamster-to-rat cardiac and lung xenotransplantation models. Cardiac xenotransplants were treated with CVF+CsA and compared with untreated controls. Lung xenotransplants were treated with either CVF+CsA or FK506 and cyclophosphamide (Cp) and compared with untreated controls. All recipients were killed by 21 days after transplantation. We examined graft survival and protein expression of protective genes, and we performed histologic and immunohistologic analyses. Rejection occurred rapidly in untreated rats. CVF+CsA or FK506+Cp treatment significantly influenced graft survival. Eight of 12 CVF+CsA-treated heart transplants survived 21 days. Seven of 16 CVF+CsA-treated lung grafts and five of 12 FK506+Cp-treated lung xenografts survived 21 days. We observed significant protein expression of bcl-2, bcl-X(L), and heme-oxygenase-1 in cardiac xenografts treated with CVF+CsA at 2, 14, and 21 days after transplantation, compared with normal hamster hearts. We also observed significant expression of these proteins in lung xenografts treated with either CVF+CsA or FK506+Cp at 21 days after transplantation, compared with normal lungs. Accommodation may be a general phenomenon for all organs, mediated through protective genes. Induction of accommodation does not require disruption of the complement system.
被引量:7 发表:2003
-
Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury.
Ischemia/reperfusion (I/R) injury is a critical factor in the dysfunction of steatotic orthotopic liver transplants. Heme oxygenase-1 (HO-1), a cytoprotective protein, may be important in ameliorating hepatic I/R injury. We used adenovirus (Ad)-based HO-1 gene transfer to analyze the effects of HO-1 overexpression in a well-established fatty Zucker rat model of I/R followed by orthotopic liver transplantation. Ad-HO-1 gene therapy increased recipient survival (80% vs. 40-50% in controls) and significantly diminished hepatocyte injury, as compared with untreated and Ad-beta-galactosidase (Ad-beta-Gal)-treated livers. Orthotopic liver transplants in the Ad-HO-1 group exhibited less macrophage infiltration in the portal areas, as compared with controls. Unlike untreated and Ad-beta-Gal-treated orthotopic liver transplant controls, which showed elevated levels of inducible nitric oxide synthase by infiltrating macrophages, inducible nitric oxide synthase expression in the Ad-HO-1 group was almost absent. In contrast, endothelial nitric oxide synthase was comparable in Ad-HO-1- and Ad-beta-Gal-transduced fatty orthotopic liver transplants. Intragraft expression of antiapoptotic Bcl-2 and Bag-1 was increased in Ad-HO-1-treated orthotopic liver transplants, as compared with Ad-beta-Gal controls. Moreover, increased HO enzymatic activity was accompanied by inhibition of caspase-3 protein expression. HO-1 gene transfer significantly prolongs survival of steatotic orthotopic liver transplants, depresses macrophage infiltration, suppresses local expression of inducible nitric oxide synthase, and modulates pro- and antiapoptotic pathways.
被引量:38 发表:2002
-
Prolonged allograft survival in anti-CD4 antibody transgenic mice: lack of residual helper T cells compared with other CD4-deficient mice.
Investigations of the role of CD4 T lymphocytes in allograft rejection and tolerance have relied on the use of mouse models with a deficiency in CD4 cells. However, in mice treated with depleting monoclonal antibody (mAb) and in MHC class II knockout (KO) mice, there are residual populations of CD4 cells. CD4 KO mice had increased CD4- CD8-TCRalphabeta+ helper T cells, and both strains of KO mice could reject skin allografts at the normal rate. In this study, transgenic mice with no peripheral CD4 cells were the recipients of skin and heart allografts. Results were compared with allograft survival in CD4 and MHC class II KO mice. GK5 (C57BL/6 bml mice transgenic for a chimeric anti-CD4 antibody) had no peripheral CD4 cells. These mice, and CD4 and class II KO mice, received BALB/c or CBA skin or cardiac allografts. Some GK5 mice were treated with anti-CD8 mAb to investigate the role of CD8 cells in rejection. CD4 and CD8 cells were assessed by FACS and immunohistochemistry. BALB/c skin on GK5 mice had a mean survival time +/- SD of 24+/-6 days, compared with 9+/-2 days in wild-type mice. Anti-CD8 mAb prolonged this to 66+/-7 days. BALB/c skin survived 10+/-2 days on class II KO and 14+/-2 days on CD4 KO, both significantly less than the survival seen on GK5 recipients (P<0.001). BALB/c hearts survived >100 days in GK5 recipients and in wild-type recipients treated with anti-CD4 mAb at the time of grafting, in contrast to a mean survival time of 10+/-2 days in untreated wild-type mice. Immunohistochemistry revealed that long-term surviving heart allografts from the GK5 recipients had CD8 but no CD4 cellular infiltrate. These hearts showed evidence of transplant vasculopathy. The GK5 mice, with a complete absence of peripheral CD4 cells, provide the cleanest available model for investigating the role of CD4 lymphocytes in allograft rejection. Prolonged skin allograft survival in these mice compared with CD4 and MHC class II KO recipients was clearly the result of improved CD4 depletion. Nevertheless, skin allograft rejection, heart allograft infiltration, and vascular disease, mediated by CD8 cells, developed in the absence of peripheral CD4 T cells.
被引量:8 发表:2000