CHROMOSOMA
chromosoma
ISSN: 0009-5915
自引率: 4.4%
发文量: 41
被引量: 3259
影响因子: 2.916
通过率: 暂无数据
出版周期: 双月刊
审稿周期: 暂无数据
审稿费用: 0
版面费用: 暂无数据
年文章数: 41
国人发稿量: 5

投稿须知/期刊简介:

Scope Eukaryotic chromosome structure and function: replication structure regulation and expression of genes recombination centromeres and telomeres chromatin/chromosomal proteins higher order structure Nuclear organization and function: molecular and structural approaches nucleolar components and functions nuclear targetting nuclear import and nuclear export Molecular biology of eukaryotic genomes Basic research on the human genome Novel techniques in chromosome research Current reviews (Chromosoma Focus) Good reasons for publishing in CHROMOSOMA Publication usually within 4 months after acceptance Highest-quality reproduction and printing No page charges No page limitations 50 free offprints of every article Obligatory expert peer review Color figures are free of charge if the electronic files are provided according to our

期刊描述简介:

Chromosoma publishes research and review articles on the functional organization of the eukaryotic cell nucleus, with a particular emphasis on the structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis; the function and dynamics of subnuclear compartments; the nuclear envelope and nucleocytoplasmic interactions, and more.

最新论文
  • BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.

    Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.

    被引量:53 发表:1970

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读