BLOOD
血液
ISSN: 0006-4971
自引率: 7.3%
发文量: 494
被引量: 165117
影响因子: 25.451
通过率: 暂无数据
出版周期: 周刊
审稿周期: 1.33
审稿费用: 0
版面费用: 暂无数据
年文章数: 494
国人发稿量: 20

投稿须知/期刊简介:

Blood, The Journal of The American Society of Hematology is published 25 times (in two volumes) per year by The American Society of Hematology (ASH).

期刊描述简介:

Blood, The Journal of The American Society of Hematology is published 25 times (in two volumes) per year by The American Society of Hematology (ASH).

最新论文
  • Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha.

    Hypoxia results in adaptive changes in the transcription of a range of genes including erythropoietin. An important mediator is hypoxia-inducible factor-1 (HIF-1), a DNA binding complex shown to contain at least two basic helix-loop-helix PAS-domain (bHLH-PAS) proteins, HIF-1alpha and aryl hydrocarbon nuclear receptor translocator (ARNT). In response to hypoxia, HIF-1alpha is activated and accumulates rapidly in the cell. Endothelial PAS domain protein 1 (EPAS-1) is a recently identified bHLH-PAS protein with 48% identity to HIF-1alpha, raising the question of its role in responses to hypoxia. We developed specific antibodies and studied expression and regulation of EPAS-1 mRNA and protein across a range of human cell lines. EPAS-1 was widely expressed, and strongly induced by hypoxia at the level of protein but not mRNA. Comparison of the effect of a range of activating and inhibitory stimuli showed striking similarities in the EPAS-1 and HIF-1alpha responses. Although major differences were observed in the abundance of EPAS-1 and HIF-1alpha in different cell types, differences in the inducible response were subtle with EPAS-1 protein being slightly more evident in normoxic and mildly hypoxic cells. Functional studies in a mutant cell line (Ka13) expressing neither HIF-1alpha nor EPAS-1 confirmed that both proteins interact with hypoxically responsive targets, but suggest target specificity with greater EPAS-1 transactivation (relative to HIF-1alpha transactivation) of the VEGF promoter than the LDH-A promoter.

    被引量:176 发表:1998

  • Target cell-induced apoptosis of interleukin-2-activated human natural killer cells: roles of cell surface molecules and intracellular events.

    We previously reported that natural killer (NK)-sensitive target cells, K562, kill interleukin-2-stimulated (lymphokine-activated killer [LAK]) but not unstimulated NK cells. We have now investigated the molecular basis of this phenomenon. Soluble monoclonal antibody (MoAb) to CD18 inhibited 75% of K562-induced DNA fragmentation and membrane disruption, whereas blocking MoAb to Fas partially inhibited only the DNA fragmentation. MoAbs to CD2, CD11a, CD11b, B7, or CD16 had limited or no effect on K562-induced death of LAK cells. Receptor ligation with either immobilized MoAb to CD18 or Fas induced membrane disruption and DNA degradation in LAK cells independently of K562, and MoAb to CD18, CD11a, or CD11b enhanced DNA fragmentation induced by anti-Fas. Fas-L-transfected Raji cells also killed LAK cells, but only if Fas-L expression was amplified. K562 cells rapidly triggered protein phosphorylation in LAK cells, and the tyrosine kinase inhibitor, Herbimycin A, inhibited DNA fragmentation and membrane disruption. Protease inhibitors strongly suppressed K562-mediated DNA fragmentation of LAK cells, but not membrane disruption. In conclusion, (1) K562-induced death of LAK cells involves primarily CD18, although other molecules, such as Fas, may also be involved; (2) K562-mediated apoptosis of LAK cells requires tyrosine phosphorylation and protease activity; (3) engagement of Fas by immobilized MoAb or Fas-L on target cells can also kill LAK cells; and (4) Fas-immobilized MoAb synergizes with coimmobilized MoAb to CD11a, CD11b, or CD18 for LAK cell killing. Activation-induced death of NK cells may represent a mechanism for NK cell regulation.

    被引量:11 发表:1996

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读