Evaluating the Efficacy of Large Language Models in Generating Medical Documentation: A Comparative Study of ChatGPT-4, ChatGPT-4o, and Claude.

来自 PUBMED

作者:

Lim BSeth IMaxwell MCuomo RRoss RJRozen WM

展开

摘要:

Large language models (LLMs) have demonstrated transformative potential in health care. They can enhance clinical and academic medicine by facilitating accurate diagnoses, interpreting laboratory results, and automating documentation processes. This study evaluates the efficacy of LLMs in generating surgical operation reports and discharge summaries, focusing on accuracy, efficiency, and quality. This study assessed the effectiveness of three leading LLMs-ChatGPT-4.0, ChatGPT-4o, and Claude-using six prompts and analyzing their responses for readability and output quality, validated by plastic surgeons. Readability was measured with the Flesch-Kincaid, Flesch reading ease scores, and Coleman-Liau Index, while reliability was evaluated using the DISCERN score. A paired two-tailed t-test (p<0.05) compared the statistical significance of these metrics and the time taken to generate operation reports and discharge summaries against the authors' results. Table 3 shows statistically significant differences in readability between ChatGPT-4o and Claude across all metrics, while ChatGPT-4 and Claude differ significantly in the Flesch reading ease and Coleman-Liau indices. Table 6 reveals extremely low p-values across BL, IS, and MM for all models, with Claude consistently outperforming both ChatGPT-4 and ChatGPT-4o. Additionally, Claude generated documents the fastest, completing tasks in approximately 10 to 14 s. These results suggest that Claude not only excels in readability but also demonstrates superior reliability and speed, making it an efficient choice for practical applications. The study highlights the importance of selecting appropriate LLMs for clinical use. Integrating these LLMs can streamline healthcare documentation, improve efficiency, and enhance patient outcomes through clearer communication and more accurate medical reports. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

收起

展开

DOI:

10.1007/s00266-025-04842-8

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(28)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读