Effects of Blocking Multiple Sources of Calcium in Hippocampus During Spatial Learning and Memory Using a Rapid Acquisition Variant of the Morris Water Task.

来自 PUBMED

作者:

Diaz CRHong NSDyck KGibb MJPanjwani MSzymanski KMcDonald RJ

展开

摘要:

Long-term potentiation (LTP) is proposed to be the molecular mechanism underlying learning and memory in the brain. A key event for LTP is the influx of calcium into post-synaptic neurons via multiple ion channel control systems. One such system involves N-methyl-D-aspartate receptors (NMDARs), which were originally believed to be essential for LTP and new learning. Recent studies have demonstrated that hippocampal NMDARs are critical for learning new spatial information in a novel environment; however, when pre-training occurs prior to new spatial learning, these receptors are not needed. Additionally, researchers have shown that activation of voltage-gated calcium channels (VGCCs) and their associated calcium influx can induce LTP independent of NMDARs. These findings led to the idea that the amount of calcium required for learning in hippocampus depends on whether the new learning takes place in a novel or familiar environment, with a novel environment demanding greater calcium influx. It was hypothesized that to impair new learning in a familiar environment both NMDARs and VGCCs would need to be blocked. Long-Evans rats were trained in a three-phase version of the Morris water task, which included pre-training, new learning mass-training, and a probe test. Prior to mass-training, intrahippocampal VGCCs were blocked individually or in combination with NMDARs blockade to evaluate their effects on the rats learning and memory. The results showed that blocking both NMDARs and VGCCs simultaneously impaired new spatial learning with familiar information, whereas VGCC blockade alone did not.

收起

展开

DOI:

10.1002/hipo.70006

被引量:

0

年份:

2025

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读