WTAP-Mediated m6A Modification of TRAIL-DR4 Suppresses MH7A Cell Apoptosis.

来自 PUBMED

作者:

Cui XXu FPang XFan CJiang H

展开

摘要:

N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia. However, little is known about the precise role of WTAP in RA. This study investigated the role of the WTAP-mediated m6A modification of TNF-related apoptosis-inducing ligand death receptor 4 (TRAIL-DR4) in RA. Methyltransferase WTAP overexpression plasmids and small interfering RNAs were constructed and transfected into MH7A cells. Immunofluorescence (IF) staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot were used to detect changes in the expression of WTAP, the B-cell lymphoma 2 (BCL2) gene family, BCL2-associated X (BAX) and TRAIL-DR4 expression, and the effects of WTAP overexpression on cell viability, cell cycle, apoptosis, and proliferation were assessed by a cell counting kit-8 (CCK-8), flow cytometry, and transmission electron microscopy (TEM). The m6A modification of TRAIL-DR4 was verified by m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and its stability was assessed by an actinomycin D assay. Overexpression of WTAP not only increased the levels of WTAP and BCL2, and decreased the levels of BAX and TRAIL-DR4, but also significantly inhibited MH7A cell apoptosis and promoted cell viability and proliferation, while WTAP silencing led to the opposite trend. The SRAMP online database predicted that TRAIL-DR4 has multiple potential methylation-binding sites, and fluorescence in situ hybridization (FISH) combined with IF showed that WTAP and TRAIL-DR4 were mainly expressed in both the nucleus and cytoplasm. MeRIP-qPCR and actinomycin D analysis experiments revealed that WTAP could promote the m6A level of TRAIL-DR4, decrease the stability of TRAIL-DR4 mRNA, and subsequently inhibit apoptosis. This study suggests that WTAP-mediated m6A modification of TRAIL-DR4 suppresses MH7A cell apoptosis. This discovery offers a new focus and avenue for the clinical treatment of RA, while also extending our understanding of the pathophysiology of RA from the standpoint of m6A alteration.

收起

展开

DOI:

10.1111/1756-185X.70065

被引量:

0

年份:

2025

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读