Obeticholic acid aggravates liver fibrosis by activating hepatic farnesoid X receptor-induced apoptosis in cholestatic mice.

来自 PUBMED

作者:

Lu QYu JXia NJin MZhao WFan XZhang RWang JJiang ZYu Q

展开

摘要:

Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment. The aim of this study was to investigate the mechanism of OCA aggravating liver fibrosis in cholestasis. The results showed that 40 mg/kg OCA elevated serum AST, ALT, ALP and γ-GT levels in bile duct ligation (BDL) mice. Besides, severe fibrosis and necrosis were observed in the OCA-treated BDL mice, which was related to hepatic apoptosis pathway activation. Both hepatic and ileal FXR signaling could be significantly activated by OCA. However, ileum-specific knockout of Fxr aggravated OCA-induced liver injury in BDL mice. On the contrary, hepatic-specific knockout of Fxr structurally and functionally ameliorated liver pathological processes in the OCA-treated BDL mice, which was due to the blockade of hepatic FXR-induced apoptosis. In conclusion, the mechanism of OCA aggravating liver fibrosis in cholestasis was based on the activation of hepatic FXR-induced apoptosis. It was also indicated ileal FXR might be a safer pharmacological target for bile acids regulation.

收起

展开

DOI:

10.1016/j.cbi.2024.111364

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读