Recapitulation of physiologic and pathophysiologic pulsatile CSF flow in purpose-built high-throughput hydrocephalus bioreactors.

来自 PUBMED

作者:

Faryami AMenkara AAjaz SRoberts CJaroudi RGura BHussini THarris CA

展开

摘要:

Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 500 people are born with hydrocephalus. Despite more than 60 years of concerted efforts, shunts still have the highest failure rate of any neurological device requiring follow-up shunt revision surgeries and contributing to the $2 billion cost of hydrocephalus care in the US alone. The absence of a tested and validated long-term in-vitro model that can incorporate clinically relevant parameters has limited hypothesis-driven studies and, in turn, limited our progress in understanding the mechanisms of shunt obstruction in hydrocephalus. Testing clinical parameters of flow, pressure, shear, catheter material, surface modifications, and others while optimizing for minimal protein, cellular, and blood interactions has yet to be done systematically for ventricular catheters. Several studies point to the need to not only understand how cells and tissues have occluded these shunt catheters but also how to stop the likely multi-faceted failure. For instance, studies show us that tissue occluding the ventricular catheter is primarily composed of proliferating astrocytes and cells of the macrophage lineage. Cell reactivity has been observed to follow flow gradients, with elevated levels of typically pro-inflammatory interleukin-6 produced under shear stress conditions greater than 0.5 dyne/[Formula: see text]. But also, that shear can shift cellular attachment. The Automated, In vitro Model for hydrocephalus research (AIMS), presented here, improves upon our previous long-term in vitro systems with specific goals of recapitulating bulk pulsatile cerebrospinal fluid (CSF) waveforms and steady-state flow directionality relevant to ventricular catheters used in hydrocephalus. The AIMS setup was developed to recapitulate a wide range of physiologic and pathophysiologic CSF flow patterns with varying pulse amplitude, pulsation rate, and bulk flow rate with high throughput capabilities. These variables were specified in a custom-built user interface to match clinical CSF flow measurements. In addition to flow simulation capabilities, AIMS was developed as a modular setup for chamber testing and quality control. In this study, the capacity and consistency of single inlet resin chambers (N = 40), multidirectional resin chambers (N = 5), silicone chambers (N = 40), and PETG chambers (N = 50) were investigated. The impact of the internal geometry of the chamber types on flow vectors during pulsatile physiologic and pathophysiologic flow was visualized using Computational Fluid Dynamics (CFD). Dynamic changes in ventricular volume were investigated by combining AIMS with MRI-driven silicone model of a pediatric patient's ventricles. Parametric data were analyzed using one-way analysis of variance (ANOVA) or repeated measures ANOVA tests. Non-parametric data were analyzed using Kruskal-Wallis test. For all tests, a confidence interval was set at 0.95 (α = 0.05). In a subset of experiments, AIMS was also tested for its capability to measure the flow of florescent microspheres through the holes of unused and explanted ventricular catheters. The analysis of peak amplitude through chambers indicated no statistically significant differences between the chamber batches. This high throughput setup was able to reproduce clinical measurements of bulk CSF flow tested in up to 50 independent pump channels such that there was no exchange of solution or flow interference between adjacent channels. Physiologic and pathophysiologic clinical measurements of CSF flow patterns were recapitulated in all four chamber types of the AIMS setup with and without augmented compliance. The AIMS setup's automated priming feature facilitated constant fluid contact throughout the study; no leaks or ruptures were observed during short- (up to 24 h) or long-term (30 days) experiments. Finally, qualitative microscopy long-exposure image capture revealed microsphere movement under steady-state and pulsatile flow of spheres moving into the shunt catheter. AIMS successfully simulates clinical measurements of physiologic and pathophysiologic CSF pulsation amplitude and frequency, as exemplified using clinical data of CSF exiting an externalized ventricular drain in four distinct chamber types, as well as flow patterns from a valve. This provides a promising platform for investigating the direct interaction between CSF, immune cells, and shunt hardware under relevant flow conditions when both the source of bulk flow and pulsatility are coupled. The implementation of this system in conjunction with a previously reported three-dimensional hydrogel scaffold in future work will enhance our understanding of shunt-related complications and improve treatment strategies by reducing the obstruction rate.

收起

展开

DOI:

10.1186/s12987-024-00600-1

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

Fluids and Barriers of the CNS

影响因子:6.954

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读