Ensuring Appropriate Representation in Artificial Intelligence-Generated Medical Imagery: Protocol for a Methodological Approach to Address Skin Tone Bias.

来自 PUBMED

作者:

O'Malley AVeenhuizen MAhmed A

展开

摘要:

In medical education, particularly in anatomy and dermatology, generative artificial intelligence (AI) can be used to create customized illustrations. However, the underrepresentation of darker skin tones in medical textbooks and elsewhere, which serve as training data for AI, poses a significant challenge in ensuring diverse and inclusive educational materials. This study aims to evaluate the extent of skin tone diversity in AI-generated medical images and to test whether the representation of skin tones can be improved by modifying AI prompts to better reflect the demographic makeup of the US population. In total, 2 standard AI models (Dall-E [OpenAI] and Midjourney [Midjourney Inc]) each generated 100 images of people with psoriasis. In addition, a custom model was developed that incorporated a prompt injection aimed at "forcing" the AI (Dall-E 3) to reflect the skin tone distribution of the US population according to the 2012 American National Election Survey. This custom model generated another set of 100 images. The skin tones in these images were assessed by 3 researchers using the New Immigrant Survey skin tone scale, with the median value representing each image. A chi-square goodness of fit analysis compared the skin tone distributions from each set of images to that of the US population. The standard AI models (Dalle-3 and Midjourney) demonstrated a significant difference between the expected skin tones of the US population and the observed tones in the generated images (P<.001). Both standard AI models overrepresented lighter skin. Conversely, the custom model with the modified prompt yielded a distribution of skin tones that closely matched the expected demographic representation, showing no significant difference (P=.04). This study reveals a notable bias in AI-generated medical images, predominantly underrepresenting darker skin tones. This bias can be effectively addressed by modifying AI prompts to incorporate real-life demographic distributions. The findings emphasize the need for conscious efforts in AI development to ensure diverse and representative outputs, particularly in educational and medical contexts. Users of generative AI tools should be aware that these biases exist, and that similar tendencies may also exist in other types of generative AI (eg, large language models) and in other characteristics (eg, sex, gender, culture, and ethnicity). Injecting demographic data into AI prompts may effectively counteract these biases, ensuring a more accurate representation of the general population.

收起

展开

DOI:

10.2196/58275

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读