Ginsenoside compound K restrains hepatic fibrotic response by dual-inhibition of GLS1 and LDHA.

来自 PUBMED

作者:

Wu WHYang YLWang TSun XMWei MGZhou XYZhu LZMa GLiu BQi LWLiu Q

展开

摘要:

Liver fibrosis is a dynamic process marked by the accumulation of extracellular matrix due to hepatic stellate cells (HSCs) activation. Ginsenoside compound K (CK), a rare derivative of its parent ginsenosides, is known to significantly ameliorate metabolic disorders. The aim of this study was to elucidate the protective effects of CK against liver fibrosis with a focus on metabolic regulation. We established liver fibrosis models in mice using carbon tetrachloride (CCl4) challenge, bile duct ligation, or a methionine-choline deficient diet, with continuous oral administration of CK at specified doses and intervals. Simultaneously, we examined the impact of CK on metabolic regulation in cultured HSCs and investigated the associated mechanisms. CK was found to alleviate liver injury and curb fibrotic responses in mouse models, as well as decrease elevated levels of liver enzyme. Metabolomic analysis in vitro highlighted the crucial roles of pyruvate and glutamine metabolism in metabolic remodeling. Immunohistochemical staining indicated significantly elevated expressions of lactate dehydrogenase A (LDHA) (p = 0.014) and glutaminase 1 (GLS1) (p = 0.024) in liver cirrhosis patients. Comparable alterations were noted in the liver of model mice and in cultured HSCs. Molecular docking and bio-layer interferometry demonstrated that CK interacts with and inhibits the activities of LDHA and GLS1. As expected, CK attenuated glycolysis and glutaminolysis, reducing HSC growth dependently on lactate and α-ketoglutarate (α-KG). Upon HSC activation, metabolism is reprogrammed with Myc as a key regulator, transcriptionally controlling LDHA, GLS1, and glutamine transporters SLC1A5 and SLC38A5. CK inhibited Myc induction, integrating glycolysis and glutaminolysis regulation to counteract the fibrotic response. CK inhibited LDHA and GLS1 activities, thereby inhibiting hepatic fibrosis. These findings offer new insights into the role of ginsenosides in liver protection, especially regarding metabolic disorders.

收起

展开

DOI:

10.1016/j.phymed.2024.156223

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读