Yi-Qi-Jian-Pi-Xiao-Yu formula inhibits cisplatin-induced acute kidney injury through suppressing ferroptosis via STING-NCOA4-mediated ferritinophagy.
摘要:
The kidneys are the primary excretory organs for platinum drugs, making them susceptible to damage from these drugs. Cisplatin-induced acute kidney injury (CIAKI) is the most common side effect observed in patients undergoing clinical cisplatin treatment. A traditional Chinese medicinal preparation, the Yi-Qi-Jian-Pi-Xiao-Yu formula (YQJPXY), which is a modified formulation of the classical Chinese medicine formula Buyang Huanwu Decoction, has long been used in the treatment of clinical kidney diseases. It is expected to be used to ameliorate cisplatin-induced acute kidney injury. However, the mechanism of this YQJPXY for the treatment of cisplatin-induced acute kidney injury remains unclear. The objective of this study is to examine the impact of the YQJPXY on the inhibition of ferroptosis in cisplatin-induced acute kidney injury and to elucidate the underlying mechanisms. The active components of YQJPXY were analysed using UPLC-MS/MS. A comprehensive investigation was conducted to elucidate the effects and regulatory mechanisms of YQJPXY on CIAKI and ferroptosis in mice subjected to acute cisplatin treatment and in mice receiving cisplatin treatment after STING expression was inhibited using the STING inhibitor C176. The renoprotective effect of YQJPXY on cisplatin-treated mice was evaluated by measuring tissue damage, inflammation and pro-fibrosis. In addition, we employed network pharmacology and molecular docking methodologies to analyse the principal regulatory targets of YQJPXY. Furthermore, the expression of key proteins and markers of ferroptosis and iron metabolism, as well as the levels of key indicators related to STING-associated ferritinophagy, were examined by immunoblotting, immunohistochemistry, immunoprecipitation, quantitative real-time PCR (qPCR) and specific probes. The results demonstrated that YQJPXY reduced the levels of indicators of injury, inflammation and pro-fibrosis in CIAKI mice, with renoprotective effects. Network pharmacological analyses revealed that ferroptosis might be the main biological process regulated by YQJPXY. Furthermore, molecular docking results indicated that STING might be a potential regulatory target of YQJPXY. Furthermore, YQJPXY treatment resulted in a significant reduction in MDA and 4-HNE levels, as well as the inhibition of ferroptosis and improvement in iron metabolic processes. Concomitantly, YQJPXY exhibited a robust protective effect on ferroptosis and iron metabolism homeostasis, as evidenced by its inhibitory action on ferritinophagy. Validation experiments utilising the cisplatin inhibitor C176 demonstrated that YQJPXY inhibits cisplatin-induced ferroptosis in kidney via STING-mediated ferritinophagy. These suggest that YQJPXY alleviates cisplatin-induced acute kidney injury through suppressing ferroptosis via STING-NCOA4-mediated Ferritinophagy.
收起
展开
DOI:
10.1016/j.phymed.2024.156189
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无