Integration of four-dimensional proteomics and network pharmacology to reveal molecular mechanisms of multi-components multi-targets effects of Sini decoction on myocardial infarction.

来自 PUBMED

作者:

Ding XXu MZhang YLong CSu XZhang YQiao YZhang XZhou QTan GMa J

展开

摘要:

Sini Decoction (SND) has been proven to be an effective formula to alleviate cardiac injury of myocardial infarction (MI). However, the potential mechanism of SND remains unclear. In this study, the MI rat model was established by ligating the left anterior descending coronary artery. A total of 17 SND-distributed components in heart were identified by using ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS). The combination of four-dimensional (4D) proteomics and network pharmacology was employed to find the potential targets for therapeutic intervention, and molecular docking and cellular thermal shift assay (CETSA) were used to reveal the interactions between the potential targets and the potential active components distributed in heart of SND. 33 SND-effected proteins were identified by 4D proteomics, which was involved in carbon metabolism, fatty acid metabolism, valine, leucine and isoleucine degradation, tricarboxylic acid (TCA) cycle and PPAR signaling pathway. 17 potential SND-targeted direct proteins were screened by comparing SND-effected proteins generated from 4D proteomics with the MI-related proteins obtained from disease database. The potential relationships between 17 components and 17 potential SND-targeted direct proteins were established by molecular docking analysis, in which songorine, benzoylhypaconine, hypaconine, formononetin, and liquiritigenin could be bound to the surrounding amino acid residues in the binding pocket of Mtor, Parp1, Acadm, Crat, and Aldh2. Then, CETSA analysis further confirmed that songorine and benzoylhypaconine could increase the heat stability of Mtor and Parp1 in cardiac tissue lysate, respectively, which suggested that there existed direct interactions between songorine and Mtor, and benzoylhypaconine and Parp1. In summary, this work concluded that SND produced cardioprotective effects mainly through preserving energy metabolism, also demonstrated that the combination of 4D proteomics and network pharmacology was a promising tool for uncovering the molecular mechanisms of multi-components multi-targets effects of TCM.

收起

展开

DOI:

10.1016/j.jpba.2024.116526

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读