Dual-activity nanozyme as an oxygen pump to alleviate tumor hypoxia and enhance photodynamic/ NIR-II photothermal therapy for sniping oral squamous cell carcinoma.

来自 PUBMED

作者:

Li XHao MLiu ALi LNešić MDYang BLiu WLin Q

展开

摘要:

Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck region, and its treatment is limited by hypoxia and inadequate oxygen supply. Continuous oxygen delivery combined with photodynamic therapy (PDT) is the key to addressing this issue. Here, a dual-enzyme activity sea urchin-like Au@Pt-Ce6-HN-1 nanoplatform was designed to serve as an "oxygen pump" to alleviate tumor hypoxia for synergistic photodynamic/photothermal therapy (PTT). In this design, the photosensitizer chlorin e6 (Ce6) is covalently linked to the Au@Pt nanozyme for PDT treatment. The Au@Pt nanozyme exhibits catalase-like activity, continuously decomposing H2O2 in the tumor microenvironment to enhance O2 levels, thereby achieving efficient PDT. Furthermore, Au@Pt can perform PTT and increase oxygen levels under NIR-II light to further promote PDT. The Au@Pt nanozyme also exhibits peroxidase-like activity, generating ·OH for chemodynamic therapy (CDT). Additionally, HN-1 guides the direction of "sniping" OSCC, and its high specificity benefits Au@Pt-Ce6-HN-1 at the tumor site. Au@Pt-Ce6-HN-1 exhibits bright fluorescence (FL), strong CT signal, and photothermal imaging capabilities, laying the foundation for subsequent guided PDT/PTT. This nanoplatform, which combines advantages such as continuous oxygen production, tumor targeting, and multimodal imaging, is expected to provide valuable insights into the treatment of OSCC. STATEMENT OF SIGNIFICANCE: Accurate clinical diagnosis and treatment of OSCC are challenging. We report a dual-enzyme activity sea urchin-like Au@Pt-Ce6-HN-1 nanoplatform, serving as an "oxygen pump" to guide photodynamic therapy (PDT) and photothermal therapy (PTT) for OSCC. This nanoplatform targets OSCC for preoperative CT diagnosis and offers fluorescence visualization for surgical navigation, demonstrating potential in clinical cancer detection and surgery guidance. This innovative approach addresses OSCC hypoxia and enhances treatment efficacy through continuous oxygen production, tumor targeting, and multimodal imaging, significantly improving patient outcomes in OSCC treatment.

收起

展开

DOI:

10.1016/j.actbio.2024.10.018

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读