Differential neuromotor control of the vertical and longitudinal genioglossus muscle fibers: An overlooked tongue retractor.
摘要:
The genioglossus (GG) is known to be the main tongue protrusor, and therefore plays a major role in breathing. However, due to the fan shape of the GG fibers, it could be assumed that contraction of the anterior fibers of the GG do not cause tongue protrusion. In this study, we examined the effect of contraction of the anterior-vertical fibers of the GG (GGV) on the tongue and their EMG activity during wakefulness and sleep. The findings were compared to those of the longitudinal fibers (GGL), which, based on their orientation, are responsible for tongue protrusion. Fine-wire electrode pairs were placed into the GGV and GGL in 11 patients with untreated OSA. Movement of the tongue during electrical stimulation at each site was videoed. The same electrodes were used to record EMG from both sites during respiratory stimulation by inspiratory loading and CO2 rebreathing during wakefulness. During sleep, repetitive flow limitation events were induced with low-level CPAP to augment GG activity. In all participants, electrical stimulation of GGL and GGV protruded and retracted the tongue, respectively. Respiratory stimulation increased GG activity, but GGV reached only 39 % and 23 % of peak GGL activity during high resistive loading and PCO2 of 65 mmHg, respectively. Flow limitation during sleep increased GGL to levels that were considerably higher than awake baseline, but GGV activity remained tonic or with minimal phasic activity, reaching on average 15 % of GGL peak activity. Our electrical stimulation findings indicate that GGV is a tongue retractor and depressor. Tongue stimulation for OSA should avoid this area. The EMG results demonstrate that the anterior part of the GG is controlled very differently from the longitudinal protrusive fibers. The GGV responses are similar to those previously found in tongue retractors and peri-pharyngeal muscles other than the GG, in which diminished activation during sleep is likely to be involved in the failure of increasing GGL activity to alleviate flow limitation.
收起
展开
DOI:
10.1016/j.resp.2024.104354
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无