Rosmarinic acid attenuates glioblastoma cells and spheroids' growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis.
摘要:
Glioblastoma (GB) is a highly malignant type of brain cancer with a poor prognosis. Therapeutic strategies for GB are still limited. Rosmarinic acid (RA), a polyphenolic compound, is a promising experimental anticancer agent, but its specific protein targets for GB remain unclear. This study aimed to elucidate the anticancer effects of RA in 2D- and 3D-GB cells and the underlying mechanisms. 3D-tumor spheroids (mimics in vivo tumors) were obtained by the hanging-drop/agarose method. RA's anti-glioma activity on U-87MG (p53-wt/PTEN-mt) and LN229 (p53-mt/PTEN-wt) cells was evaluated through cell viability, colony-formation, migration/invasion/angiogenesis assays, fluorescence imaging, and spheroid growth analysis. The underlying mechanism of the anticancer effects of RA was investigated by Western blot and immunofluorescence analysis. The MEK inhibitor U0126 was used to block ERK phosphorylation. RA treatments exerted anti-proliferative and pro-apoptotic effects on human GB cells. RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth, and migration/invasion in 2D-culture and cancer stem cell (CSC)-like 3D-spheroid culture (SPC). Repeated therapy in SPC was more effective by leading to disrupted structure than a single treatment. Treatments in SPC also suppressed epithelial-mesenchymal transition (EMT) and CSC-like properties. Strikingly, RA downregulated the SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function in both gliomas. Immunofluorescence labeling revealed decreased SIRT1 and NF-κB-p65 and increased FOXO1 and GAPDH proteins in nuclear location (associated with apoptosis). Surprisingly, RA increased p-ERK1/2 levels, but priming with U0126 abolished RA-mediated p-ERK upregulation; thus, autophagy and apoptosis induction in GB cells were prevented, and the growth of GB spheroids accelerated. Specifically, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells. Due to genetic differences in cells, U-87MG cells were more sensitive to RA treatments than LN229 cells. Meanwhile, our positive control drug trial results with FDA-approved temozolomide (TMZ) used in GB treatment showed that our test compound rosmarinic acid exhibited higher therapeutic effects than TMZ at lower doses. Suppression of EMT, downregulation of SIRT1/FOXO1/NF-κB axis, inhibition of PTEN/PI3K/AKT signaling pathway, and ERK-induced apoptosis and autophagy were determined to be involved in stopping glioma progression. Our findings for the first time, revealed that RA may have potential therapeutic use by having multiple targets in human brain cancer with further clinical studies.
收起
展开
DOI:
10.1016/j.phymed.2024.156060
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无