Serum metabolome signature response to different types of resistance training.

来自 PUBMED

作者:

Feuerbacher JFCheng RSedliak MHu MFinni TJUmlauff LSchumann MCheng S

展开

摘要:

Pneumatic resistance training (PRT) facilitates a longer time under tension that might lead to greater changes in body composition when compared to traditional resistance training (TRT), possibly enhancing serum metabolite concentrations indicative of healthy metabolic function. To assess the impact of PRT and TRT on muscular strength, body composition and serum metabolome, sixty-nine men (age: 31.8±7.2 years, height: 179.7±5.4 cm, weight: 81.1±9.9 kg) were randomized into two 10-week intervention groups (PRT:n=24 and TRT:n=24) and one control group (CON:n=21). Serum metabolite concentrations were assessed before and after the training intervention by high-throughput nuclear magnetic resonance. Fat mass and lean mass were obtained by bioimpedance analysis. The training intervention resulted in an increase in LM for both PRT (1.85 ± 2.69%; p=0.003) and TRT (2.72 ±4.53%; p=0.004), while only PRT reduced in body fat percentage (PRT: -5.08±10.76%; p=0.019) statistically significantly. Only in PRT and TRT significant increases in small high-density lipoproteins (S-HDL-L) and small HDL particles (S-HDL-P) were observed. When controlling for fat and lean mass, the effects on S-HDL-L/S-HDL-P diminished. Network analysis may suggest that PRT and TRT result in an increase in network connectivity and robustness. It appears that the observed improvements are associated with changes in body composition.

收起

展开

DOI:

10.1055/a-2412-3410

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读