Serratiopeptidase exhibits antibiofilm activity through the proteolytic function of N-terminal domain and versatile function of the C-terminal domain.

来自 PUBMED

作者:

Srivastava VBandhu SMishra SChaudhuri TK

展开

摘要:

Serratiopeptidase, a serine protease traditionally used as an oral anti-inflammatory drug has been found to show antibiofilm action. Structurally, it comprises of two distinct domains; viz-the N-terminal catalytic domain (Ncat) and a C-terminal RTX (Repeat-In-Toxin) domain (Crtx). Understanding the antibiofilm action of the serratiopeptidase molecule, as well as the antibiofilm action of each of its two domains, was the objective of this study. Separate clones to express the complete recombinant serratiopeptidase protein and its variant containing a mutation in the catalytic site, the N-terminal catalytic domain and its mutant, and the C-terminal Repeat-In-Toxin domain were prepared, and the proteins were purified. The impact of these proteins on pre-existing biofilms, as well as their effect upon addition of these proteins during biofilm formation was investigated. In our investigation, we have been able to analyze the antibiofilm action of serratiopeptidase in detail. Obtained results conclude that while N-terminally located proteolytic domain of serratiopeptidase conventionally acts against biofilms by hydrolytic activity, the C-terminal domain regulates or prevents biofilm formation by yet unknown mechanism in addition to its known function as an C-terminal located calcium modulated internal chaperone ensuring the proper folding and secretion of the molecule. The study's findings give new evidence that the Crtx domain plays a significant role in antibiofilm action. The proteolytic Ncat domain breaks down pre-formed biofilms. The C-terminal domain, on the other hand, acts as an inhibitor of biofilm formation by regulating or preventing biofilm development.

收起

展开

DOI:

10.1016/j.bbapap.2024.141046

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读