Diagnostic performances of Claude 3 Opus and Claude 3.5 Sonnet from patient history and key images in Radiology's "Diagnosis Please" cases.

来自 PUBMED

作者:

Kurokawa ROhizumi YKanzawa JKurokawa MSonoda YNakamura YKiguchi TGonoi WAbe O

展开

摘要:

The diagnostic performance of large language artificial intelligence (AI) models when utilizing radiological images has yet to be investigated. We employed Claude 3 Opus (released on March 4, 2024) and Claude 3.5 Sonnet (released on June 21, 2024) to investigate their diagnostic performances in response to the Radiology's Diagnosis Please quiz questions. In this study, the AI models were tasked with listing the primary diagnosis and two differential diagnoses for 322 quiz questions from Radiology's "Diagnosis Please" cases, which included cases 1 to 322, published from 1998 to 2023. The analyses were performed under the following conditions: (1) Condition 1: submitter-provided clinical history (text) alone. (2) Condition 2: submitter-provided clinical history and imaging findings (text). (3) Condition 3: clinical history (text) and key images (PNG file). We applied McNemar's test to evaluate differences in the correct response rates for the overall accuracy under Conditions 1, 2, and 3 for each model and between the models. The correct diagnosis rates were 58/322 (18.0%) and 69/322 (21.4%), 201/322 (62.4%) and 209/322 (64.9%), and 80/322 (24.8%) and 97/322 (30.1%) for Conditions 1, 2, and 3 for Claude 3 Opus and Claude 3.5 Sonnet, respectively. The models provided the correct answer as a differential diagnosis in up to 26/322 (8.1%) for Opus and 23/322 (7.1%) for Sonnet. Statistically significant differences were observed in the correct response rates among all combinations of Conditions 1, 2, and 3 for each model (p < 0.01). Claude 3.5 Sonnet outperformed in all conditions, but a statistically significant difference was observed only in the comparison for Condition 3 (30.1% vs. 24.8%, p = 0.028). Two AI models demonstrated a significantly improved diagnostic performance when inputting both key images and clinical history. The models' ability to identify important differential diagnoses under these conditions was also confirmed.

收起

展开

DOI:

10.1007/s11604-024-01634-z

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(3)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读