Role of curcumin on beta-amyloid protein, tau protein, and biochemical and oxidative changes in streptozotocin-induced diabetic rats.

来自 PUBMED

作者:

Ermiş MÇiftci G

展开

摘要:

Diabetes is one of the most common endocrine metabolic diseases and is associated with the accumulation of beta-amyloid plaques in the brain. Amyloid beta (Aβ) and abnormal tau proteins are effective in the development of Alzheimer's disease. The aim of this study is to investigate the therapeutic and protective effects of curcumin on beta-amyloid (Aβ) accumulation and tau protein expression levels, as well as biochemical and oxidative changes in streptozotocin-induced diabetes in rats. The study comprised five groups, each consisting of eight rats: control, diabetic, curcumin, curcumin during diabetic induction, and curcumin post-diabetic induction. Groups 2 and 4 were administered a single dose of 45 mg/kg streptozotocin on day 1, while group 5 received it on day 28. Curcumin was orally administered via gavage at a dose of 100 mg/kg/day for 35 days to the third, fourth, and fifth groups. At the end of the trial (day 35), blood sugar levels and insulin resistance were similar between the control and curcumin-treated groups but significantly higher in the diabetic groups (P < 0.05). The protective effect of curcumin is tested during induction and active diabetes. The results indicated that diabetic rats displayed increased levels of Aβ, tau protein, and total oxidant capacity (TOS) compared to the curcumin-treated groups. Additionally, the total antioxidant capacity (TAS) levels were lower in the diabetic rats (P < 0.05). Aβ protein levels are lower in both the serum and brain of rats with active diabetes and treated with curcumin compared to control rats (P > 0.05). In addition, serum TAS levels were higher in rats treated with curcumin following the induction of diabetes than pre-induction of diabetes (P > 0.05). The TOS levels in the serum were higher in the rats treated with curcumin during active diabetes compared to the rats treated prior to the induction of diabetes (P < 0.05). However, no significant difference was observed in the brain. The above results show that curcumin has an effect on reducing oxidative stress caused by diabetes and increasing antioxidant activity.

收起

展开

DOI:

10.1007/s00210-024-03231-3

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(59)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读