The flavonoid quercetin decreases ACE2 and TMPRSS2 expression but not SARS-CoV-2 infection in cultured human lung cells.

来自 PUBMED

作者:

Houghton MJBalland EGartner MJThomas BJSubbarao KWilliamson G

展开

摘要:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells, via its spike protein, and transmembrane protease, serine 2 (TMPRSS2) cleaves the spike-ACE2 complex to facilitate virus entry. As rate-limiting steps for virus entry, modulation of ACE2 and/or TMPRSS2 may decrease SARS-CoV-2 infectivity and COVID-19 severity. In silico modeling suggested the natural bioactive flavonoid quercetin can bind to ACE2 and a recent randomized clinical trial demonstrated that oral supplementation with quercetin increased COVID-19 recovery. A range of cultured human cells were assessed for co-expression of ACE2 and TMPRSS2. Immortalized Calu-3 lung cells, cultured and matured at an air-liquid interface (Calu-3-ALIs), were established as the most appropriate. Primary bronchial epithelial cells (PBECs) were obtained from healthy adult males (N = 6) and cultured under submerged conditions to corroborate the outcomes. Upon maturation or reaching 80% confluence, respectively, the Calu-3-ALIs and PBECs were treated with quercetin, and mRNA and protein expression were assessed by droplet digital PCR and ELISA, respectively. SARS-CoV-2 infectivity, and the effects of pre- and co-treatment with quercetin, was assessed by median tissue culture infectious dose assay. Quercetin dose-dependently decreased ACE2 and TMPRSS2 mRNA and protein in both Calu-3-ALIs and PBECs after 4 h, while TMPRSS2 remained suppressed in response to prolonged treatment with lower doses (twice daily for 3 days). Quercetin also acutely decreased ADAM17 mRNA, but not ACE, in Calu-3-ALIs, and this warrants further investigation. Calu-3-ALIs, but not PBECs, were successfully infected with SARS-CoV-2; however, quercetin had no antiviral effect, neither directly nor indirectly through downregulation of ACE2 and TMPRSS2. Calu-3-ALIs were reaffirmed to be an optimal cell model for research into the regulation of ACE2 and TMPRSS2, without the need for prior genetic modification, and will prove valuable in future coronavirus and respiratory infectious disease work. However, our data demonstrate that a significant decrease in the expression of ACE2 and TMPRSS2 by a promising prophylactic candidate may not translate to infection prevention.

收起

展开

DOI:

10.1002/biof.2084

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读