Metagenomics analysis yields assembled genomes from prokaryotic anaerobes with polymer-degrading potential.

来自 PUBMED

作者:

Blair EMBrown JLLi DHolden PAO'Malley MA

展开

摘要:

Anaerobic microbial communities are often highly degradative, such as those found in the herbivore rumen and large-scale anaerobic digesters. Since the microbial communities in these systems degrade recalcitrant organic polymers, we hypothesize that some microbes in anaerobic environments may be involved in man-made plastic association, deformation, or even breakdown. While efforts have been put toward characterizing microbial communities, many microbes remain unidentified until they can be sufficiently cultivated to generate enough genetic material to assemble high-quality metagenome assemblies and reference genomes. In this study, microbial consortia from goat fecal pellets and anaerobic digester sludge were cultivated for over 6 weeks to assemble metagenomes from novel anaerobic taxa with potential degradative activity. To select for microbes with potential plastic-degrading abilities, plastic strips were included in culture, though the presence of plastic did not appear to enrich for particularly degradative consortia, yet it did select for novel species that otherwise may not have been characterized. Whole-genome shotgun sequencing enabled assembly of 72 prokaryotic metagenome-assembled genomes (MAGs) with >90% completion, <5% contamination, and an N50 >10,000 bp; 17 of these MAGs are classified as novel species given their lack of similarity to publicly available genomes and MAGs. These 72 MAGs vary in predicted carbohydrate-degrading abilities, with genes predicted to encode fewer than 10 or up to nearly 400 carbohydrate-active enzymes. Overall, this enrichment strategy enables characterization of less abundant MAGs in a community, and the MAGs identified here can be further mined to advance understanding of degradative anaerobic microbial consortia.

收起

展开

DOI:

10.1002/btpr.3484

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读