Assessing the Alignment of Large Language Models With Human Values for Mental Health Integration: Cross-Sectional Study Using Schwartz's Theory of Basic Values.

来自 PUBMED

作者:

Hadar-Shoval DAsraf KMizrachi YHaber YElyoseph Z

展开

摘要:

Large language models (LLMs) hold potential for mental health applications. However, their opaque alignment processes may embed biases that shape problematic perspectives. Evaluating the values embedded within LLMs that guide their decision-making have ethical importance. Schwartz's theory of basic values (STBV) provides a framework for quantifying cultural value orientations and has shown utility for examining values in mental health contexts, including cultural, diagnostic, and therapist-client dynamics. This study aimed to (1) evaluate whether the STBV can measure value-like constructs within leading LLMs and (2) determine whether LLMs exhibit distinct value-like patterns from humans and each other. In total, 4 LLMs (Bard, Claude 2, Generative Pretrained Transformer [GPT]-3.5, GPT-4) were anthropomorphized and instructed to complete the Portrait Values Questionnaire-Revised (PVQ-RR) to assess value-like constructs. Their responses over 10 trials were analyzed for reliability and validity. To benchmark the LLMs' value profiles, their results were compared to published data from a diverse sample of 53,472 individuals across 49 nations who had completed the PVQ-RR. This allowed us to assess whether the LLMs diverged from established human value patterns across cultural groups. Value profiles were also compared between models via statistical tests. The PVQ-RR showed good reliability and validity for quantifying value-like infrastructure within the LLMs. However, substantial divergence emerged between the LLMs' value profiles and population data. The models lacked consensus and exhibited distinct motivational biases, reflecting opaque alignment processes. For example, all models prioritized universalism and self-direction, while de-emphasizing achievement, power, and security relative to humans. Successful discriminant analysis differentiated the 4 LLMs' distinct value profiles. Further examination found the biased value profiles strongly predicted the LLMs' responses when presented with mental health dilemmas requiring choosing between opposing values. This provided further validation for the models embedding distinct motivational value-like constructs that shape their decision-making. This study leveraged the STBV to map the motivational value-like infrastructure underpinning leading LLMs. Although the study demonstrated the STBV can effectively characterize value-like infrastructure within LLMs, substantial divergence from human values raises ethical concerns about aligning these models with mental health applications. The biases toward certain cultural value sets pose risks if integrated without proper safeguards. For example, prioritizing universalism could promote unconditional acceptance even when clinically unwise. Furthermore, the differences between the LLMs underscore the need to standardize alignment processes to capture true cultural diversity. Thus, any responsible integration of LLMs into mental health care must account for their embedded biases and motivation mismatches to ensure equitable delivery across diverse populations. Achieving this will require transparency and refinement of alignment techniques to instill comprehensive human values.

收起

展开

DOI:

10.2196/55988

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(31)

引证文献(4)

来源期刊

JMIR Mental Health

影响因子:6.326

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读