The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review.

来自 PUBMED

作者:

Stueckle CAHaage P

展开

摘要:

 Large volumes of data increasing over time lead to a shortage of radiologists' time. The use of systems based on artificial intelligence (AI) offers opportunities to relieve the burden on radiologists. The AI systems are usually optimized for a radiological area. Radiologists must understand the basic features of its technical function in order to be able to assess the weaknesses and possible errors of the system and use the strengths of the system. This "explainability" creates trust in an AI system and shows its limits.  Based on an expanded Medline search for the key words "radiology, artificial intelligence, referring physician interaction, patient interaction, job satisfaction, communication of findings, expectations", subjective additional relevant articles were considered for this narrative review.  The use of AI is well advanced, especially in radiology. The programmer should provide the radiologist with clear explanations as to how the system works. All systems on the market have strengths and weaknesses. Some of the optimizations are unintentionally specific, as they are often adapted too precisely to a certain environment that often does not exist in practice - this is known as "overfitting". It should also be noted that there are specific weak points in the systems, so-called "adversarial examples", which lead to fatal misdiagnoses by the AI even though these cannot be visually distinguished from an unremarkable finding by the radiologist. The user must know which diseases the system is trained for, which organ systems are recognized and taken into account by the AI, and, accordingly, which are not properly assessed. This means that the user can and must critically review the results and adjust the findings if necessary. Correctly applied AI can result in a time savings for the radiologist. If he knows how the system works, he only has to spend a short amount of time checking the results. The time saved can be used for communication with patients and referring physicians and thus contribute to higher job satisfaction.  Radiology is a constantly evolving specialty with enormous responsibility, as radiologists often make the diagnosis to be treated. AI-supported systems should be used consistently to provide relief and support. Radiologists need to know the strengths, weaknesses, and areas of application of these AI systems in order to save time. The time gained can be used for communication with patients and referring physicians.   · Explainable AI systems help to improve workflow and to save time.. · The physician must critically review AI results, under consideration of the limitations of the AI.. · The AI system will only provide useful results if it has been adapted to the data type and data origin.. · The communicating radiologist interested in the patient is important for the visibility of the discipline.. · Stueckle CA, Haage P. The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review. Fortschr Röntgenstr 2024; 196: 1115 - 1123.

收起

展开

DOI:

10.1055/a-2271-0799

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读