Biophysical studies do not reveal direct interactions between human PF4 and Ad26.COV2.S vaccine.
摘要:
COVID-19 vaccines have been widely used to control the SARS-CoV-2 pandemic. In individuals receiving replication-incompetent, adenovirus vector-based COVID-19 vaccines (eg, ChAdOx1 nCoV-19 [AstraZeneca] or Ad26.COV2.S [Johnson & Johnson/Janssen] vaccines), a very rare but serious adverse reaction has been reported and described as vaccine-induced immune thrombotic thrombocytopenia (VITT). The exact mechanism of VITT following Ad26.COV2.S vaccination is under investigation. Antibodies directed against human platelet factor 4 (PF4) are considered critical in the pathogenesis of VITT, suggesting similarities with heparin-induced thrombocytopenia. It has been postulated that components of these vaccines mimic the role of heparin by binding to PF4, triggering production of these anti-PF4 antibodies. This study aimed to investigate the potential interaction between human PF4 and Ad26.COV2.S vaccine using several biophysical techniques. Direct interaction of PF4 with Ad26.COV2.S vaccine was investigated using dynamic light scattering, biolayer interferometry, and surface plasmon resonance. For both biosensing methods, the Ad26.COV2.S vaccine was immobilized to the sensor surface and PF4 was used as analyte. No direct interactions between PF4 and Ad26.COV2.S vaccine could be detected using dynamic light scattering and biolayer interferometry. Surface plasmon resonance technology was shown to be unsuitable to investigate these types of interactions. Our findings make it very unlikely that direct binding of PF4 to Ad26.COV2.S vaccine or components thereof is driving the onset of VITT, although the occurrence of such interactions after immunization (potentially facilitated by unknown plasma or cellular factors) cannot be excluded. Further research is warranted to improve the understanding of the full mechanism of this adverse reaction.
收起
展开
DOI:
10.1016/j.jtha.2023.12.020
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(183)
参考文献(0)
引证文献(1)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无