Oral squamous cell carcinoma-derived EVs promote tumor progression by regulating inflammatory cytokines and the IL-17A-induced signaling pathway.

来自 PUBMED

作者:

Li RZhou YZhang MXie RDuan NLiu HQin YMa JLi ZYe PWang WWang X

展开

摘要:

Inflammatory cytokines in the tumor microenvironment (TME) contribute to tumor growth, proliferation, and invasion, and tumor-derived extracellular vesicles (EVs) act as critical "messengers" of communication in the tumor microenvironment. The effects of EVs derived from oral squamous cell carcinoma (OSCC) cells on tumor progression and the inflammatory microenvironment are still unclear. Our study aims to investigate the role of OSCC-derived EVs in tumor progression, the imbalanced TME, and immunosuppression and their effect on the IL-17A-induced signaling pathway. EVs were isolated from the supernatant of a mouse OSCC cell line, SCC7. The effects of SCC7-EVs and the EV release-specific inhibitor GW4869 on the proliferation and migration of SCC7 cells were investigated in vitro by using CCK-8 and scratch wound healing assays. RT-qPCR and ELISA were performed to examine the alterations in cytokine levels. Then, a mouse xenograft model of OSCC was established by submucosal injection of SCC7 cells with or without SCC7-EV and GW4869 treatment. The effects of GW4869 and SCC7-EVs on xenograft tumor proliferation and invasion were investigated by tumor volume determination and histopathological examination. ELISA was used to investigate the changes in serum cytokine levels. Immunohistochemistry was adopted to analyze the alterations in the levels of inflammatory cytokines, immune factors, and crucial molecules in the IL-17A signaling pathway. SCC7-derived EVs increased the supernatant and serum levels of IL-17A, IL-10, IL-1β, and PD-L1, while GW4869 decreased those of TNF-α and IFN-γ. SCC7-EV treatment significantly increased xenograft tumor growth and invasion in mice but resulted in little liquefactive necrosis in tumors. However, GW4869 treatment significantly inhibited xenograft tumor growth but resulted in more liquefactive necrosis. SCC7-derived EVs decreased the expression level of PTPN2, suppressing the immune responses of CD8 + T cells in vivo. Moreover, SCC7-EV treatment significantly enhanced the tumor expression levels of crucial molecules in the IL-17A pathway, including IL-17A, TRAF6 and c-FOS, whereas GW4869 treatment significantly reduced those levels in tumor tissues. Our results indicated that OSCC-derived EVs can promote tumor progression by altering the TME, causing an inflammatory cytokine imbalance, inducing immunosuppression, and contributing to overactivation of the IL-17A-induced signaling pathway. Our study might provide novel insights into the role of OSCC-derived EVs in tumor biological behavior and immune dysregulation.

收起

展开

DOI:

10.1016/j.intimp.2023.110094

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(0)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读