The Hypoglycemic Effect of Berberine and Berberrubine Involves Modulation of Intestinal Farnesoid X Receptor Signaling Pathway and Inhibition of Hepatic Gluconeogenesis.

来自 PUBMED

作者:

Sun RKong BYang NCao BFeng DYu XGe CFeng SFei FHuang JLu ZXie YYang CSGuo GLWang GAa J

展开

摘要:

Our previous study suggests that berberine (BBR) lowers lipids by modulating bile acids and activating intestinal farnesoid X receptor (FXR). However, to what extent this pathway contributes to the hypoglycemic effect of BBR has not been determined. In this study, the glucose-lowering effects of BBR and its primary metabolites, berberrubine (M1) and demethyleneberberine, in a high-fat diet-induced obese mouse model were studied, and their modulation of the global metabolic profile of mouse livers and systemic bile acids was determined. The results revealed that BBR (150 mg/kg) and M1 (50 mg/kg) decreased mouse serum glucose levels by 23.15% and 48.14%, respectively. Both BBR and M1 markedly modulated the hepatic expression of genes involved in gluconeogenesis and metabolism of amino acids, fatty acids, and purine. BBR showed a stronger modulatory effect on systemic bile acids than its metabolites. Moreover, molecular docking and gene expression analysis in vivo and in vitro suggest that BBR and M1 are FXR agonists. The mRNA levels of gluconeogenesis genes in the liver, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, were significantly decreased by BBR and M1. In summary, BBR and M1 modulate systemic bile acids and activate the intestinal FXR signaling pathway, which reduces hepatic gluconeogenesis by inhibiting the gene expression of gluconeogenesis genes, achieving a hypoglycemic effect. BBR and M1 may function as new, natural, and intestinal-specific FXR agonists with a potential clinical application to treat hyperglycemia and obesity. SIGNIFICANCE STATEMENT: This investigation revealed that BBR and its metabolite, berberrubine, significantly lowered blood glucose, mainly through activating intestinal farnesoid X receptor signaling pathway, either directly by themselves or indirectly by modulating the composition of systemic bile acids, thus inhibiting the expression of gluconeogenic genes in the liver and, finally, reducing hepatic gluconeogenesis and lowering blood glucose. The results will help elucidate the mechanism of BBR and provide a reference for mechanism interpretation of other natural products with low bioavailability.

收起

展开

DOI:

10.1124/dmd.120.000215

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读