Biosynthesis of NiFe(2) O(4) @Ag Nanocomposite and Assessment of Its Effect on Expression of norA Gene in Staphylococcus aureus.

来自 PUBMED

作者:

Pourmehdi NMoradi-Shoeili ZSadat Naeemi ASalehzadeh A

展开

摘要:

Activity of norA efflux pump has been known as a resistance mechanism to antibiotics like ciprofloxacin in Staphylococcus aureus. This study was carried out to assess the effect of biosynthesized NiFe2 O4 @Ag nanocomposite on expression of norA gene in Staphylococcus aureus. In this experimental study, 30 clinical samples were collected from patients hospitalized at different hospitals in Guilan Province, Iran. Then, clinical isolates of S. aureus were identified by standard microbiological tests. Antimicrobial susceptibility tests of clinical and standard strains of S. aureus were done by disk diffusion method according to CLSI guideline. Fourier transform infrared spectroscopy (FT-IR) was used to analyze the various functional groups present in the biosynthesized NiFe2 O4 @Ag nanocomposite. This analysis confirmed the formation of alga proteins coated on magnetite nanocomposite. X-ray diffraction (XRD) verified the crystalline structure of NiFe2 O4 @Ag and the deposition of silver on the surface of NiFe2 O4 . Energy dispersive X-ray mapping (EDX-map) analysis confirmed the existence of Ag, Ni, Fe and O in the final product. Scanning electron microscopy (SEM) confirmed that the nanocomposites were spherical in shape and Transmission electron microscopy (TEM) results revealed that the NiFe2 O4 @Ag had the particle size about 100 nm. Antibacterial activity of NiFe2 O4 @Ag alone and combined with ciprofloxacin was evaluated using the disk assay method, and minimum inhibitory concentration (MIC) by broth dilution method. Afterwards, the expression of norA efflux pump gene with and without of NiFe2 O4 @Ag nanocomposite and ciprofloxacin was evaluated by Real-Time PCR. Real-Time PCR results demonstrated that the expression of norA gene in the strains exposed to both NiFe2 O4 @Ag nanocomposite (1/4 MIC) and ciprofloxacin (1/8 MIC) significantly reduced in comparison to untreated strains. This study reveals that, when NiFe2 O4 @Ag nanocomposite is combined with ciprofloxacin, the inhibitory effect of ciprofloxacin increases against growth of S. aureus. Therefore, NiFe2 O4 @Ag nanocomposite can be considered as an effective factor to decrease the growth of S. aureus along with ciprofloxacin.

收起

展开

DOI:

10.1002/cbdv.202000072

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(0)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读