Spatial correlation of linear energy transfer and relative biological effectiveness with suspected treatment-related toxicities following proton therapy for intracranial tumors.

来自 PUBMED

作者:

Ödén JToma-Dasu IWitt Nyström PTraneus EDasu A

展开

摘要:

The enhanced relative biological effectiveness (RBE) at the end of the proton range might increase the risk of radiation-induced toxicities. This is of special concern for intracranial treatments where several critical organs at risk (OARs) surround the tumor. In the light of this, a retrospective analysis of dose-averaged linear energy transfer (LETd ) and RBE-weighted dose (DRBE ) distributions was conducted for three clinical cases with suspected treatment-related toxicities following intracranial proton therapy. Alternative treatment strategies aiming to reduce toxicity risks are also presented. The clinical single-field optimized (SFO) plans were recalculated for 81 error scenarios with a Monte Carlo dose engine. The fractionation DRBE was 1.8 Gy (RBE) in 28 or 30 fractions assuming a constant RBE of 1.1. Two LETd - and α/β-dependent variable RBE models were used for evaluation, including a sensitivity analysis of the α/β parameter. Resulting distributions of DRBE and LETd were analyzed together with normal tissue complication probabilities (NTCPs). Subsequently, four multi-field optimized (MFO) plans, with an additional beam and/or objectives penalizing protons stopping in OARs, were created to investigate the potential reduction of LETd , DRBE , and NTCP. The two variable RBE models agreed well and predicted average RBE values around 1.3 in the toxicity volumes, resulting in an increased near-maximum DRBE of 7-11 Gy (RBE) compared to RBE = 1.1 in the nominal scenario. The corresponding NTCP estimates increased from 0.8%, 0.0%, and 3.7% (RBE = 1.1) to 15.5%, 1.8%, and 45.7% (Wedenberg RBE model) for the three patients, respectively. The MFO plans generally allowed for LETd , DRBE , and NTCP reductions in OARs, without compromising the target dose. Compared to the clinical SFO plans, the maximum reduction in the near-maximum LETd was 56%, 63%, and 72% in the OAR exhibiting the toxicity for the three patients, respectively. Although a direct causality between RBE and toxicity cannot be established here, high LETd and DRBE correlated spatially with the observed toxicities, whereas setup and range uncertainties had a minor impact. Individual factors, which might affect the patient-specific radiosensitivity, were however not included in these calculations. The MFO plans using both an additional beam and proton track-end objectives allowed the largest reductions in LETd , DRBE , and NTCP, and might be future tools for similar cases.

收起

展开

DOI:

10.1002/mp.13911

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(0)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读