Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats.

来自 PUBMED

作者:

Zuo GZhang THuang LAraujo CPeng JTravis ZOkada TOcak UZhang GTang JLu XZhang JH

展开

摘要:

Oxidative stress and neuronal apoptosis play important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). The activation of TGR5, a novel membrane-bound bile acid receptor, possesses anti-oxidative stress and anti-apoptotic effects in hepatobiliary disease and kidney disease. The present study aimed to explore the neuroprotective effect of TGR5 activation against EBI after SAH and the potential underlying mechanisms. The endovascular perforation model of SAH was performed on 199 Sprague Dawley rats to investigate the beneficial effects of TGR5 activation after SAH. INT-777, a specific synthetic TGR5 agonist, was administered intranasally at 1 h after SAH induction. TGR5 CRISPR and ALDH2 CRISPR were administered intracerebroventricularly at 48 h before SAH to illuminate potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, TUNEL staining, Fluoro-Jade C staining, Nissl staining, immunofluorescence staining, and western blots were performed at 24 h after SAH. The expressions of endogenous TGR5 and ALDH2 gradually increased and peaked at 24 h after SAH. TGR5 was expressed primarily in neurons, as well as in astrocytes and microglia. The activation of TGR5 with INT-777 significantly improved the short-term and long-term neurological deficits, accompanied by reduced the oxidative stress and neuronal apoptosis at 24 h after SAH. Moreover, INT-777 treatment significantly increased the expressions of TGR5, cAMP, phosphorylated PKCε, ALDH2, HO-1, and Bcl-2, while downregulated the expressions of 4-HNE, Bax, and Cleaved Caspase-3. TGR5 CRISPR and ALDH2 CRISPR abolished the neuroprotective effects of TGR5 activation after SAH. In summary, the activation of TGR5 with INT-777 attenuated oxidative stress and neuronal apoptosis via the cAMP/PKCε/ALDH2 signaling pathway after SAH in rats. Furthermore, TGR5 may serve as a novel therapeutic target to ameliorate EBI after SAH.

收起

展开

DOI:

10.1016/j.freeradbiomed.2019.09.002

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(0)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读