Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants.

来自 PUBMED

作者:

Alyami AQuinn AJIacopino D

展开

摘要:

The fabrication of flexible and transparent Surface Enhanced Raman Scattering (SERS) substrates enabling fast, sensitive and on site detection is relevant for the practical application of SERS for real world analysis, such as food safety and organic pollutants monitoring. In this work novel Ag NPs/PDMS composites were fabricated and employed for the SERS detection of food contaminants directly on food surfaces. Ag NPs/PDMS composites were obtained by self-assembly of organic Ag nanoparticle solutions on flexible PDMS surfaces. Preliminary evaluation of the suitability of Ag NPs/PDMS probes for SERS analysis showed that composites were characterized by a SERS enhancement factor (EF) of 3.1 × 105, good stability and resistance to harsh conditions as well as good uniformity and batch to bach reproducibility. The "sticky" nature of Ag NPs/PDMS composites was exploited to "paste" them on irregular analytical surfaces, thus enabling the detection in situ of food contaminant crystal violet (CV) and pesticide thiram, respectively. Specifically, CV and thiram concentrations as low as 1 × 10-7 M and 1 × 10-5 M were measured on contaminated fish skin and orange peel, respectively. Furthermore, efficient SERS detection by micro-extraction of CV from fish skin and thiram from fruit surfaces was achieved, showing the analytical versatility of the fabricated SERS composites.

收起

展开

DOI:

10.1016/j.talanta.2019.03.115

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(0)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读