Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP.
摘要:
Binding of ATP to the inositol 1,4,5-trisphosphate receptor (IP(3)R) results in a more pronounced Ca(2+)release in the presence of inositol 1,4,5-trisphosphate (IP(3)). Two recently published studies demonstrated a different ATP sensitivity of IP(3)-induced Ca(2+)release in cell types expressing different IP(3)R isoforms. Cell types expressing mainly IP(3)R3 were less sensitive to ATP than cell types expressing mainly IP(3)R1 (Missiaen L, Parys JB, Sienaert I et al. Functional properties of the type 3 InsP(3)receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 1998;273: 8983-8986; Miyakawa T, Maeda A, Yamazawa T et al. Encoding of Ca(2+)signals by differential expression of IP(3)receptor subtypes. EMBO J 1999;18: 1303-1308). In order to investigate the difference in ATP sensitivity between IP(3)R isoforms at the molecular level, microsomes of Sf9 insect cells expressing full-size IP(3)R1 or IP(3)R3 were covalently labeled with ATP by using the photoaffinity label 8-azido[alpha-(32)P]ATP. ATP labeling of the IP(3)R was measured after immunoprecipitation of IP(3)Rs with isoform-specific antibodies, SDS-PAGE and Phosphorimaging. Unlabeled ATP inhibited covalent linking of 8-azido[alpha-(32)P]ATP to the recombinant IP(3)R1 and IP(3)R3 with an IC(50)of 1.6 microM and 177 microM, respectively. MgATP was as effective as ATP in displacing 8-azido[alpha-(32)P]ATP from the ATP-binding sites on IP(3)R1 and IP(3)R3, and in stimulating IP(3)-induced Ca(2+)release from permeabilized A7r5 and 16HBE14o- cells. The interaction of ATP with the ATP-binding sites on IP(3)R1 and IP(3)R3 was different from its interaction with the IP(3)-binding domains, since ATP inhibited IP(3)binding to the N-terminal 581 amino acids of IP(3)R1 and IP(3)R3 with an IC(50)of 353 microM and 4.0 mM, respectively. The ATP-binding sites of IP(3)R1 bound much better ATP than ADP, AMP and particularly GTP, while IP(3)R3 displayed a much broader nucleotide specificity. These results therefore provide molecular evidence for a differential regulation of IP(3)R1 and IP(3)R3 by ATP.
收起
展开
DOI:
10.1054/ceca.2000.0121
被引量:
年份:
2000


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(0)
参考文献(0)
引证文献(0)
来源期刊
影响因子:4.685
JCR分区: 暂无
中科院分区:暂无